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Abstract—In the theory of belief functions, many measures
of uncertainty have been introduced. However, it is not always
easy to understand what these measures really try to represent.
In this paper, we re-interpret some measures of uncertainty in
the theory of belief functions. We present some interests and
drawbacks of the existing measures. On these observations, we
introduce a measure of contradiction. Therefore, we present some
degrees of non-specificity and Bayesianity of a mass. We propose
a degree of specificity based on the distance between a mass and
its most specific associated mass. We also show how to use the
degree of specificity to measure the specificity of a fusion rule.
Illustrations on simple examples are given.
Keywords: Belief function, uncertainty measures, speci-
ficity, conflict.

I. INTRODUCTION

The theory of belief functions was first introduced by [1]
in order to represent some imprecise probabilities with upper
and lower probabilities. Then [15] proposed a mathematical
theory of evidence.

Let Θ be a frame of discernment. A basic belief assignment
(bba) m is the mapping from elements of the powerset 2Θ onto
[0, 1] such that: ∑

X∈2Θ

m(X) = 1. (1)

The axiom m(∅) = 0 is often used, but not mandatory. A
focal element X is an element of 2Θ such that m(X) 6= 0..
The difference of a bba with a probability is the domain of
definition. A bba is defined on the powerset 2Θ and not only
on Θ. In the powerset, each element is not equivalent in terms
of precision. Indeed, θ1 ∈ Θ is more precise than θ1∪θ2 ∈ 2Θ.

In the case of the DSmT introduced in [17], the bba are
defined on an extension of the powerset: the hyper powerset
noted DΘ, formed by the closure of Θ by union and inter-
section. The problem of signification of each focal element is
the same as in 2Θ. For instance, θ1 ∈ Θ is less precise than
θ1 ∩ θ2 ∈ DΘ. In the rest of the paper, we will note GΘ for
either 2Θ or DΘ.

In order to try to quantify the measure of uncertainty such
as in the set theory [5] or in the theory of probabilities
[16], some measures have been proposed and discussed in

the theory of belief functions [2], [7], [8], [21]. However,
the domain of definition of the bba does not allow an ideal
definition of measure of uncertainty. Moreover, behind the
term of uncertainty, different notions are hidden.

In the section II, we present different kinds of measures
of uncertainty given in the state of art, we discuss them and
give our definitions of some terms concerning the uncertainty.
In section III, we introduce a measure of contradiction and
discuss it. We introduce simple degrees of uncertainty in the
section IV, and propose a degree of specificity in the section
V. We show how this degree of specificity can be used to
measure the specificity of a combination rule.

II. MEASURES OF UNCERTAINTY ON BELIEF FUNCTIONS

In the framework of the belief functions, several functions
(we call them belief functions) are in one to one correspon-
dence with the bba: bel, pl and q. From these belief functions,
we can define several measures of uncertainty. Klir in [8]
distinguishes two kinds of uncertainty: the non-specificity
and the discord. Hence, we recall hereafter the main belief
functions, and some non-specificity and discord measures.

A. Belief functions

Hence, the credibility and plausibility functions represent
respectively a minimal and maximal belief. The credibility
function is given from a bba for all X ∈ GΘ by:

bel(X) =
∑

Y⊆X,Y 6≡∅

m(Y ). (2)

The plausibility is given from a bba for all X ∈ GΘ by:

pl(X) =
∑

Y ∈GΘ,Y ∩X 6≡∅

m(Y ). (3)

The commonality function is also another belief function given
by:

q(X) =
∑

Y ∈GΘ,Y⊇X

m(Y ). (4)

These functions allow an implicit model of imprecise and
uncertain data. However, these functions are monotonic by
inclusion: bel and pl are increasing, and q is decreasing. This



is the reason why the most of time we use a probability to take
a decision. The most used projection into probability subspace
is the pignistic probability transformation introduced by [18]
and given by:

betP(X) =
∑

Y ∈GΘ,Y 6≡∅

|X ∩ Y |
|Y |

m(Y ), (5)

where |X| is the cardinality of X , in the case of the DSmT
that is the number of disjoint elements corresponding in the
Venn diagram.

From this probability, we can use the measure of uncertainty
given in the theory of probabilities such as the Shannon
entropy [16], but we loose the interest of the belief functions
and the information given on the subsets of the discernment
space Θ.

B. Non-specificity

The non-specificity in the classical set theory is the impre-
cision of the sets. Such as in [14], we define in the theory of
belief functions, the non-specificity related to vagueness and
non-specificity.

Definition The non-specificity in the theory of belief
functions quantifies how a bba m is imprecise.

The non-specificity of a subset X is defined by Hartley
[5] by log2(|X|). This measure was generalized by [2] in the
theory of belief functions by:

NS(m) =
∑

X∈GΘ, X 6≡∅

m(X) log2(|X|). (6)

That is a weighted sum of the non-specificity, and the weights
are given by the basic belief in X . Ramer in [13] has shown
that it is the unique possible measure of non-specificity in the
theory of belief functions under some assumptions such as
symmetry, additivity, sub-additivity, continuity, branching and
normalization.

If the measure of the non-specificity on a bba is low, we can
consider the bba is specific. Yager in [21] defined a specificity
measure such as:

S(m) =
∑

X∈GΘ, X 6≡∅

m(X)

|X|
. (7)

Both definitions corresponded to an accumulation of a
function of the basic belief assignment on the focal elements.
Unlike the classical set theory, we must take into account the
bba in order to quantify (to weight) the belief of the imprecise
focal elements. The imprecision of a focal element can of
course be given by the cardinality of the element.

First of all, we must be able to compare the non-specificity
(or specificity) between several bba’s, event if these bba’s are
not defined on the same discernment space. That is not the
case with the equations (6) and (7). The non-specificity of the
equation (6) takes its values in [0, log2(|Θ|)]. The specificity
of the equation (7) can have values in [ 1

|Θ| , 1]. We will show
how we can easily define a degree of non-specificity in [0, 1].
We could also define a degree of specificity from the equation

(7), but that is more complicated and we will later show how
we can define a specificity degree.

The most non-specific bba’s for both equations (6) and (7)
are the total ignorance bba given by the categorical bba mΘ :
m(Θ) = 1. We have NS(m) = log2(|Θ|) and S(m) = 1

|Θ| .
This categorical bba is clearly the most non-specific for us.
However, the most specific bba’s are the Bayesian bba’s. The
only focal elements of a Bayesian bba are the simple elements
of Θ. On these kinds of bba m we have NS(m) = 0 and
S(m) = 1. For example, we take the three Bayesian bba’s
defined on Θ = {θ1, θ2, θ3} by:

m1(θ1) = m1(θ2) = m1(θ3) = 1/3, (8)
m2(θ1) = m2(θ2) = 1/2, m2(θ3) = 0, (9)
m3(θ1) = 1, m3(θ2) = m3(θ3) = 0. (10)

We obtain the same non-specificity and specificity for these
three bba’s.

That hurts our intuition; indeed, we intuitively expect that
the bba m3 is the most specific and the m1 is the less specific.
We will define a degree of specificity according to a most
specific bba that we will introduce.

C. Discord

Different kinds of discord have been defined as extensions
for belief functions of the Shannon entropy, given for the
probabilities. Some discord measures have been proposed from
plausibility, credibility or pignistic probability:

E(m) = −
∑
X∈GΘ

m(X) log2(pl(X)), (11)

C(m) = −
∑
X∈GΘ

m(X) log2(bel(X)), (12)

D(m) = −
∑
X∈GΘ

m(X) log2(betP(X)), (13)

with E(m) ≤ D(m) ≤ C(m). We can also give the Shanon
entropy on the pignistic probability:

−
∑
X∈GΘ

betP(X) log2(betP(X)). (14)

Other measures have been proposed, [8] has shown that these
measures can be resumed by:

−
∑
X∈GΘ

m(X) log2(1− Conm(X)), (15)

where Con is called a conflict measure of the bba m on
X . However, in our point of view that is not a conflict
such presented in [20], but a contradiction. We give the both
following definitions:

Definition A contradiction in the theory of belief functions
quantifies how a bba m contradicts itself.

Definition (C1) The conflict in the theory of belief functions
can be defined by the contradiction between 2 or more bba’s.

In order to measure the conflict in the theory of belief
functions, it was usual to use the mass k given by the



conjunctive combination rule on the empty set. This rule is
given by two basic belief assignments m1 and m2 and for all
X ∈ GΘ by:

mc(X) =
∑

A∩B=X

m1(A)m2(B) := (m1 ⊕m2)(X). (16)

k = mc(∅) can also be interpreted as a non-expected solution.
In [21], Yager proposed another conflict measure from the

value of k given by − log2(1− k).
However, as observed in [9], the weight of conflict given

by k (and all the functions of k) is not a conflict measure
between the basic belief assignments. Indeed this value is
completely dependant of the conjunctive rule and this rule
is non-idempotent - the combination of identical basic belief
assignments leads generally to a positive value of k. To
highlight this behavior, we defined in [12] the auto-conflict
which quantifies the intrinsic conflict of a bba. The auto-
conflict of order n for one expert is given by:

an =

(
n
⊕
i=1

m

)
(∅). (17)

The auto-conflict is a kind of measure of the contradiction,
but depends on the order. We studied its behavior in [11].
Therefore we need to define a measure of contradiction
independent on the order. This measure is presented in the
next section III.

III. A CONTRADICTION MEASURE

The definition of the conflict (C1) involves firstly to measure
it on the bba’s space and secondly that if the opinions of two
experts are far from each other, we consider that they are in
conflict. That suggests a notion of distance. That is the reason
why in [11], we give a definition of the measure of conflict
between experts assertions through a distance between their
respective bba’s. The conflict measure between 2 experts is
defined by:

Conf(1, 2) = d(m1,m2). (18)

We defined the conflict measure between one expert i and the
other M − 1 experts by:

Conf(i, E) =
1

M − 1

M∑
j=1,i6=j

Conf(i, j), (19)

where E = {1, . . . ,M} is the set of experts in conflict with i.
Another definition is given by:

Conf(i,M) = d(mi,mM ), (20)

where mM is the bba of the artificial expert representing the
combined opinions of all the experts in E except i.

We use the distance defined in [6], which is for us the most
appropriate, but other distances are possible. See [4] for a
comparison of distances in the theory of belief functions. This
distance is defined for two basic belief assignments m1 and
m2 on GΘ by:

d(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2), (21)

where D is an G|Θ| ×G|Θ| matrix based on Jaccard distance
whose elements are:

D(A,B) =


1, ifA = B = ∅,

|A ∩B|
|A ∪B|

, ∀A,B ∈ GΘ.
(22)

However, this measure is a total conflict measure. In order
to define a contradiction measure we keep the same spirit.
First, the contradiction of an element X with respect to a bba
m is defined as the distance between the bba’s m and mX ,
where mX(X) = 1, X ∈ GΘ, is the categorical bba:

Contrm(X) = d(m,mX), (23)

where the distance can also be the Jousselme distance on the
bba’s. The contradiction of a bba is then defined as a weighted
contradiction of all the elements X of the considered space
GΘ:

Contrm = 2
∑
X∈GΘ

m(X)d(m,mX). (24)

The factor 2 is given to obtain values in [0, 1] as shown in
the following illustration.

A. Illustration
First we note that for all categorical bbas mY , the contra-

diction given by the equation (23) gives ContrmY
(Y ) = 0

and the contradiction given by the equation (24) brings also
ContrmY

= 0. Considering the bba m1(θ1) = 0.5 and
m1(θ2) = 0.5, we have Contrm1

= 1. That is the maximum
of the contradiction, hence the contraction of a bba takes its
values in [0, 1].

Figure 1. Bayesian bba’s
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Taking the Bayesian bba given by: m2(θ1) = 0.6, m2(θ2) =
0.3, and m2(θ3) = 0.1. We obtain:

Contrm2
(θ1) ' 0.36,

Contrm2
(θ2) ' 0.66,

Contrm2
(θ3) ' 0.79

The contradiction for m2 is Contrm2 = 0.9849.
Take m3({θ1, θ2, θ3}) = 0.6, m3(θ2) = 0.3, and m3(θ3) =

0.1; the masses are the same than m2, but the highest one is
on Θ = {θ1, θ2, θ3} instead of θ1. We obtain:

Contrm3
({θ1, θ2, θ3}) ' 0.28,

Contrm3
(θ2) ' 0.56,

Contrm3
(θ3) ' 0.71



Figure 2. Non-dogmatic bba
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The contradiction for m3 is Contrm3 = 0.8092. We can see
that the contradiction is lowest thanks to the distance taking
into account the imprecision of Θ.

Figure 3. Focal elements of cardinality 2
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If we consider now the same mass values but on
focal elements of cardinality 2: m4({θ1, θ2}) = 0.6,
m4(θ1, θ3) = 0.3, and m4(θ2, θ3) = 0.1. We obtain:

Contrm4
({θ1, θ2}) ' 0.29,

Contrm4
({θ1, θ3}) ' 0.53,

Contrm4
({θ2, θ3}) ' 0.65

The contradiction for m4 is Contrm4
= 0.80.

Fewer of focal elements there are, smaller the contradiction
of the bba will be, and more the focal elements are precise,
higher the contradiction of the bba will be.

IV. DEGREES OF UNCERTAINTY

We have seen in the section II that the measure non-
specificity given by the equation (6) take its values in a space
dependent on the size of the discernment space Θ. Indeed, the
measure of non-specificity takes its values in [0, log2(|Θ|)].

In order to compare some non-specificity measures in an
absolute space, we define a degree of non-specificity from the
equation (6) by:

δNS(m) =
∑

X∈GΘ, X 6≡∅

m(X)
log2(|X|)
log2(|Θ|)

=
∑

X∈GΘ, X 6≡∅

m(X) log|Θ|(|X|).
(25)

Therefore, this degree takes its values into [0, 1] for all bba’s
m, independently of the size of discernment. We still have

Table I
EVALUATION OF BAYESIANITY ON EXAMPLES

m1 m2 m3 m4 m5 m6 mΘ

θ1 0.4 0.3 0.1 0.3 0 0 0

θ2 0.1 0.1 0.3 0.1 0 0 0

θ3 0.1 0.1 0.1 0.1 0 0 0

θ1 ∪ θ2 0.3 0.3 0.5 0 0.6 0.6 0

θ1 ∪ θ3 0.1 0.2 0 0 0.4 0 0

θ2 ∪ θ3 0 0 0 0 0 0 0

Θ 0 0 0 0.5 0 0.4 1

δB 0.75 0.68 0.68 0.5 0.37 0.23 0

δNS 0.25 0.32 0.32 0.5 0.63 0.77 1

δNS(mΘ) = 1, where mΘ is the categorical bba giving the
total ignorance. Moreover, we obtain δNS(m) = 0 for all
Bayesian bba’s.

From the definition of the degree of non-specificity, we can
propose a degree of specificity such as:

δB(m) = 1−
∑

X∈GΘ, X 6≡∅

m(X)
log2(|X|)
log2(|Θ|)

= 1−
∑

X∈GΘ, X 6≡∅

m(X) log|Θ|(|X|).
(26)

As we observe already the degree of non-specificity given
by the equation (26) does not really measure the specificity
but the Bayesianity of the considered bba. This degree is equal
to 1 for Bayesian bba’s and not one for other bba’s.

Definition The Bayesianity in the theory of belief functions
quantify how far a bba m is from a probability.

We illustrate these degrees in the next subsection.

A. Illustration

In order to illustrate and discuss the previous introduced
degrees we take some examples given in the table I. The
bba’s are defined on 2Θ where Θ = {θ1, θ2, θ3}. We only
consider here non-Bayesian bba’s, else the values are still
given hereinbefore.

We can observe for a given sum of basic belief on the
singletons of Θ the Bayesianity degree can change according
to the basic belief on the other focal elements. For example,
the degrees are the same for m2 and m3, but different for m4.
For the bba m4, note that the sum of the basic beliefs on the
singletons is equal to the basic belief on the ignorance. In this
case the Bayesianity degree is exactly 0.5. That is conform to
the intuitive signification of the Bayesianity. If we look m5 and
m6, we first note that there is no basic belief on the singletons.
As a consequence, the Bayesianity is weaker. Moreover, the
bba m5 is naturally more Bayesian than m6 because of the
basic belief on Θ.

We must add that these degrees are dependent on the
cardinality of the frame of discernment for non Bayesian bba’s.
Indeed, if we consider the given bba m1 with Θ = {θ1, θ2, θ3},
the degree δB = 0.75. Now if we consider the same bba



with Θ = {θ1, θ2, θ3, θ4} (no beliefs are given on θ4), the
Bayesianity degree is δB = 0.80. The larger is the frame, the
larger becomes the Bayesianity degree.

V. DEGREE OF SPECIFICITY

In the previous section, we showed the importance to con-
sider a degree instead of a measure. Moreover, the measures
of specificity and non-specificity given by the equations (7)
and (6) give the same values for every Bayesian bba’s as seen
on the examples of the section II.

We introduce here a degree of specificity based on compar-
ison with the bba the most specific. This degree of specificity
is given by:

δS(m) = 1− d(m,ms), (27)

where ms is the bba the most specific associated to m and
d is a distance defined onto [0, 1]. Here we also choose the
Jousselme distance, the most appropriated on the bba’s space,
with values onto [0, 1]. This distance is dependent on the size
of the space GΘ, we have to compare the degrees of specificity
for bba’s defined from the same space. Accordingly, the main
problem is to define the bba the most specific associated to
m.

A. The most specific bba

In the theory of belief functions, several partial orders
have been proposed in order to compare the bba’s [3]. These
partial ordering are generally based on the comparisons of
their plausibilities or their communalities, specially in order
to find the least-committed bba. However, comparing bba’s
with plausibilities or communality can be complex and without
unique solution.

The problem to find the most specific bba associated to a bba
m does not need to use a partial ordering. We limit the specific
bba’s to the categorical bba’s: mX(X) = 1 where X ∈ GΘ

and we will use the following axiom and proposition:
Axiom For two categorical bba’s mX and mY , mX is more

specific than mY if and only if |X| < |Y |.
In case of equality, the both bba’s are isospecific.
Proposition If we consider two isospecific bba’s mX and

mY , the Jousselme distance between every bba m and mX is
equal to the Jousselme distance between m and mY :

∀m, d(m,mX) = d(m,mY ) (28)

if and only if m(X) = m(Y ).
Proof The proof is obvious considering the equations (21)

and (22). As the both bba’s mX and mY are categoric there is
only one non null term in the difference of vectors m−mX and
m−mY . These both terms aX and aY are equal, because mX

and mY are isospecific and so according to the equation (22)
D(Z,X) = D(Z, Y ) ∀Z ∈ GΘ. Therefore m(X) = m(Y ),
that proves the proposition �

We define the most specific bba ms associated to a bba
m as a categorical bba as follows: ms(Xmax) = 1 where
Xmax ∈ GΘ.

Therefore, the matter is now how to find Xmax. We propose
two approaches:

First approach, Bayesian case
If m is a Bayesian bba we define Xmax such as:

Xmax = arg max(m(X), X ∈ Θ). (29)

If there exist many Xmax (i.e. having the same
maximal bba and giving many isospecific bba’s),
we can take any of them. Indeed, according to the
previous proposition, the degree of specificity of m
will be the same with ms given by either Xmax

satisfying (29).
First approach, non-Bayesian case

If m is a non-Bayesian bba, we can define Xmax in
a similar way such as:

Xmax = arg max

(
m(X)

|X|
, X∈ GΘ, X 6≡∅

)
. (30)

In fact, this equation generalizes the equation (29).
However, in this case we can also have several Xmax

not giving isospecific bba’s. Therefore, we choose
one of the more specific bba, i.e. believing in the
element with the smallest cardinality. Note also that
we keep the terms of Yager from the equation (7).

Second approach
Another way in the case of non-Bayesian bba m is
to transform m into a Bayesian bba, thanks to one of
the probability transformation such as the pignistic
probability. Afterwards, we can apply the previous
Bayesian case. With this approach, the most specific
bba associated to a bba m is always a categorical
bba such as: ms(Xmax) = 1 where Xmax ∈ Θ and
not in GΘ.

B. Illustration

In order to illustrate this degree of specificity we give some
examples. The table II gives the degree of specificity for
some Bayesian bba’s. The smallest degree of specificity of
a Bayesian bba is obtained for the uniform distribution (m1),
and the largest degree of specificity is of course obtain for
categorical bba (m8).

The degree of specificity increases when the differences
between the mass of the largest singleton and the masses
of other singletons are getting bigger: δS(m3) < δS(m4) <
δS(m5) < δS(m6). In the case when one has three disjoint
singletons and the largest mass of one of them is 0.45 (on θ1),
the minimum degree of specificity is reached when the masses
of θ2 and θ3 are getting further from the mass of θ1 (m6). If
two singletons have the same maximal mass, bigger this mass
is and bigger is the degree of specificity: δS(m2) < δS(m3).

In the case of non-Bayesian bba, we first take a simple
example:

m1(θ1) = 0.6, m1(θ1 ∪ θ2) = 0.4 (31)
m2(θ1) = 0.5, m2(θ1 ∪ θ2) = 0.5. (32)

For these two bba’s m1 and m2, both proposed approaches
give the same most specific bba: mθ1 . We obtain δS(m1) =



Table II
ILLUSTRATION OF THE DEGREE OF SPECIFICITY ON BAYESIAN BBA.

θ1 θ2 θ3 δS

m1 1/3 1/3 1/3 0.423

m2 0.4 0.4 0.2 0.471

m3 0.45 0.45 0.10 0.493

m4 0.45 0.40 0.15 0.508

m5 0.45 0.3 0.25 0.523

m6 0.45 0.275 0.275 0.524

m7 0.6 0.3 0.1 0.639

m8 1 0 0 1

0.7172 and δS(m2) = 0.6465. Therefore, m1 is more specific
than m2. Remark that these degrees are the same if we
consider the bba’s defined on 2Θ2 and 2Θ3 , with Θ2 = {θ1, θ2}
and Θ3 = {θ1, θ2, θ3}. If we now consider Bayesian bba
m3(θ1) = m3(θ2) = 0.5, the associated degree of specificity
is δS(m3) = 0.5. As expected by intuition, m2 is more specific
than m3.

We consider now the following bba:

m4(θ1) = 0.6, m1(θ1 ∪ θ2 ∪ θ3) = 0.4. (33)

The most specific bba is also mθ1 , and we have δS(m4) =
0.6734. This degree of specificity is naturally smaller than
δS(m1) because of the mass 0.4 on a more imprecise focal
element.

Let’s now consider the following example:

m5(θ1 ∪ θ2) = 0.7, m5(θ1 ∪ θ3) = 0.3. (34)

We do not obtain the same most specific bba with both
proposed approaches: the first one will give the categorical
bba mθ1∪θ2 and the second one mθ1 . Hence, the first degree
of specificity is δS(m5) = 0.755 and the second one is
δS(m5) = 0.111. We note that the second approach produces
naturally some smaller degrees of specificity.

C. Application to measure the specificity of a combination rule

We propose in this section to use the proposed degree of
specificity in order to measure the quality of the result of
a combination rule in the theory of belief functions. Indeed,
many combination rules have been developed to merge the
bba’s [10], [19]. The choice of one of them is not always
obvious. For a special application, we can compare the pro-
duced results of several rules, or try to choose according to the
special proprieties wanted for an application. We also proposed
to study the comportment of the rules on generated bba’s
[12]. However, no real measures have been used to evaluate
the combination rules. Hereafter, we only show how we can
use the degree of specificity to evaluate and compare the
combination rules in the theory of belief functions. A complete
study could then be done for example on generated bba’s.
We recall here the used combination rules, see [10] for their
description.

The Dempster rule is the normalized conjunctive combi-
nation rule of the equation (16) given for two basic belief
assignments m1 and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mDS(X) =
1

1− k
∑

A∩B=X

m1(A)m2(B). (35)

where k is either mc(∅) or the sum of the masses of the
elements of ∅ equivalence class for DΘ.

The Yager rule transfers the global conflict on the total
ignorance Θ:

mY(X) =

 mc(X) if X ∈ 2Θ \ {∅,Θ}
mc(Θ) +mc(∅) if X = Θ
0 if X = ∅

(36)

The disjunctive combination rule is given for two basic
belief assignments m1 and m2 and for all X ∈ GΘ by:

mDis(X) =
∑

A∪B=X

m1(A)m2(B). (37)

The Dubois and Prade rule is given for two basic belief
assignments m1 and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mDP(X) =
∑

A∩B=X

m1(A)m2(B)+
∑

A∪B=X

A∩B≡∅

m1(A)m2(B). (38)

The PCR rule is given for two basic belief assignments m1

and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mPCR(X) = mc(X) +∑
Y ∈GΘ,

X∩Y≡∅

(
m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)
, (39)

The principle is very simple: compute the degree of speci-
ficity of the bba’s you want combine, then calculate the degree
of specificity obtained on the bba after the chosen combination
rule. The degree of specificity can be compared to the degrees
of specificity of the combined bba’s.

In the following example given in the table III we com-
bine two Bayesian bba’s with the discernment frame Θ =
{θ1, θ2, θ3}. Both bba’s are very contradictory. The values
are rounded up. The first approach gives the same degree of
specificity than the second one except for the rules mDis, mDP

and mY. We observe that the smallest degree of specificity is
obtained for the conjunctive rule because of the accumulated
mass on the empty set not considered in the calculus of the
degree. The highest degree of specificity is reached for the
Yager rule, for the same reason. That is the only rule given a
degree of specificity superior to δS(m1) and to δS(m2). The
second approach shows well the loss of specificity with the
rules mDis, mY and mDP having a cautious comportment.
With the example, the degree of specificity obtained by the
combination rules are almost all inferior to δS(m1) and to
δS(m2), because the bba’s are very conflicting. If the degrees
of specificity of the rule such as mDS and mPCR are superior



Table III
DEGREES OF SPECIFICITY FOR COMBINATION RULES ON BAYESIAN BBA’S.

m1 m2 mc mDS mY mDis mDP mPCR

∅ 0 0 0.76 0 0 0 0 0

θ1 0.6 0.2 0.12 0.50 0.12 0.12 0.12 0.43

θ2 0.1 0.6 0.06 0.25 0.06 0.06 0.06 0.37

θ3 0.3 0.2 0.06 0.25 0.06 0.06 0.06 0.20

θ1 ∪ θ2 0 0 0 0 0 0.38 0.38 0

θ1 ∪ θ3 0 0 0 0 0 0.18 0.18 0

θ2 ∪ θ3 0 0 0 0 0 0.20 0.20 0

Θ 0 0 0 0 0.76 0 0 0

ms 1- mθ1 mθ2 mθ1 mθ1 mΘ mθ1∪θ2 mθ1∪θ2 mθ1
ms 2- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1 mθ1 mθ1
δS 1- 0.639 0.655 0.176 0.567 0.857 0.619 0.619 0.497

δS 2- 0.639 0.655 0.176 0.567 0.457 0.478 0.478 0.497

to δS(m1) and to δS(m2), that means that the bba’s are not
in conflict.

Let’s consider now a simple non-Bayesian example in
table IV.

Figure 4. Two non-Bayesian bba’s
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VI. CONCLUSION

First, we propose in this article a reflection on the mea-
sures on uncertainty in the theory of belief functions. A lot
of measures have been proposed to quantify different kind
of uncertainty such as the specificity - very linked to the
imprecision - and the discord. The discord, we do not have
to confuse with the conflict, is for us a contradiction of a
source (giving information with a bba in the theory of belief
functions) with oneself. We distinguish the contradiction and
the conflict that is the contradiction between 2 or more bba’s.
We introduce a measure of contradiction for a bba based on
the weighted average of the conflict between the bba and the
categorical bba’s of the focal elements.

The previous proposed specificity or non-specificity mea-
sures are not defined on the same space. Therefore that is
difficult to compare them. That is the reason why we propose

Table IV
DEGREES OF SPECIFICITY FOR COMBINATION RULES ON NON-BAYESIAN

BBA’S.

m1 m2 mc mDS mY mDis mDP mPCR

∅ 0 0 0.47 0 0 0 0 0

θ1 0.4 0.2 0.2 0.377 0.2 0.08 0.2 0.39

θ2 0.1 0.3 0.17 0.321 0.17 0.03 0.17 0.28

θ3 0.3 0.1 0.12 0.226 0.12 0.03 0.12 0.24

θ1 ∪ θ2 0.2 0.1 0.04 0.076 0.04 0.31 0.18 0.06

θ1 ∪ θ3 0 0 0 0 0 0.1 0.1 0

θ2 ∪ θ3 0 0.2 0 0 0 0.18 0.1 0.03

Θ 0 0.1 0 0 0.47 0.27 0.13 0

ms 1- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1∪θ2 mθ1 mθ1
ms 2- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1 mθ1 mθ1
δS 1- 0.553 0.522 0.336 0.488 0.389 0.609 0.428 0.497

δS 2- 0.553 0.522 0.336 0.488 0.389 0.456 0.428 0.497

the use of degree of uncertainty. Moreover these measures give
some counter-intuitive results on Bayesian bba’s. We propose
a degree of specificity based on the distance between a mass
and its most specific associated mass that we introduce. This
most specific associated mass can be obtained by two ways and
give the nearest categorical bba for a given bba. We propose
also to use the degree of specificity in order to measure the
specificity of a fusion rule. That is a tool to compare and
evaluate the several combination rules given in the theory of
belief functions.
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