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Abstract. The automatic seabed characterization is a difficult problem. Most
automatic characterization approaches are based on texture analysis. Indeed, the
sonar seabed images present many homogeneous areas of sediment that can be
interpretated as a sonar texture.

Here, we optimize the agglomerative hierarchical clustering algorithm to pro-
duce homogenous clusters of sediments images, combining known and unknow
data.
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1 Introduction

The problem of automatic seabed characterization is very important and
difficult. The seabed characterization is important in order to make seabed
maps for sedimentologists, for autonomous underwater vehicle navigation or
pollution. One approach in order to characterize the seabed is the use of a
sonar. The main issues with sonar images is those are particularly difficult
to characterize by automatic process. The expert has never the certainty to
differentiate well the sand from the silt for example: the difference between
these sediments comes only from the granulometry that varies continuously.

We first expose the principle of agglomerative hierarchical classification.
In section 2 we present the sonar images data and the considered texture
analysis. We study the usual clustering methods applied on sonar small-
images. Then in section 5 we define a hierarchy quality in order to choose
better agregation functions for hierarchical classification. In section 6, we
present results of the combination of known and unknow data in order to
characterize the sediment of the sonar images.

2 Agglomerative Hierarchical Classification

Agglomerative hierarchical classification (AHC) is a common approach to
build a clustering system from a dataset. The algorithm considers the objects
of the dataset as trivial clusters of size 1: d({x}, {y}) = d(x, y). Then, at
each step, the algorithm merges the two nearest clusters into a new cluster,
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and computes the distance between the new cluster and the other ones. The
index associated to the cluster C = A ∪ B is the dissimilarity d(A, B).

The dissimilarity induced by an indexed hierarchy (i.e. dissimilarity be-
tween x and y is the smallest index of a cluster containing x and y) is an
ultrametric.

The natural clustering system of a dissimilarity, in the way of Jardine and
Sibson [Jardine and Sibson, 1971], is composed of the maximal cliques of its
threshold graphs, indexed by the diameter of the clusters. So a set A is a
cluster for the dissimilarity d with an index λ if:

(i) there exists x and y in A such that d(x, y) = λ,
(ii) u and v in A brings d(u, v) 6 λ,
(iii) for any z not in A there exists t in A such that d(z, t) > λ.

The indexed clustering system induced by an ultrametric is an indexed
hierarchy. It is well-known that ultrametrics and indexed hierarchies are in
bijection.

Let d be a dissimilarity on X and used as a dissimilarity on the singletons
of X . An agglomerative hierarchical clustering (AHC) can be summarized in
three steps:

1. find A and B such that d(A, B) is minimal.
2. merge A and B in a cluster C.
3. for each remaining cluster D, compute d(C, D).
4. go back to step 1 unless C = X .

Differences between algorithms are mainly the way d(C, D) is computed,
but steps 1 and 2 can have more than one interpretation. When more than
one pair {A, B} realize the minimum of d, the choice can be random or
lexicographic, or d can be transformed such that the choice has no further
consequence [Barthelémy and Guénoche, 1991]. This usually leads to clusters
C larger than A ∪ B. Due to the origin of our data, minimum of d can be
considered as unique, and therefore the possible strategies for steps 1 and 2
are equivalent.

Many strategies for computing the distance between the new cluster
C = A∪B and the other clusters have been explored by Lance and Williams
[Lance and Williams, 1967], and formalized under the formula:

dp(C, D) = αAdp(A, D) + αBdp(B, D) + βdp(A, B) + γ|dp(A, D)− dp(B, D)|

Chen [Chen, 1996] restricts the form of α, β and γ in order to explicit
the properties of the indexed hierarchy produced by the algorithm. They are
functions of three parameters:

rA = |A|
|A∪B| rB = |B|

|A∪B| rD = |D|
|A∪B|
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The parameter p is a nonzero real number.

dp(C, D) = α(rA, rD)dp(A, D) + α(rB , rC)dp(B, D) +

β(rA, rB, rC)dp(A, B) + γ(rC)|dp(A, D) − dp(B, D)|

Most usual agglomerative hierarchical classification algorithm can be written
under this formalism:

Algorithm α(u, w) β(u, v, w) γ(w) p
single linkage 1/2 0 −1/2 1
complete linkage 1/2 0 1/2 1
Ward’s method u+w

1+w
− w

1+w
0 2

Such an algorithm is called LW (α, β, γ, p). One should notice that the
value of p for single linkage and complete linkage, which is usually 1, can be
any nonzero real number. An LW algorithm is said space-conserving if

min{d(A, D), d(B, D)} 6 d(A ∪ B, D) 6 max{d(A, D), d(B, D)}

Single linkage and complete linkage are space conserving. So ultrametrics
are fixed points for these algorithms. Ward method is not space-conserving,
but it is space-dilatating: the dissimilarity produced by the algorithm is
greater than the input, and can be different even if the input dissimilarity is
an ultramtetric.

To produce an admissible hierarchy indexed by f , the condition
A ⊆ B =⇒ f(A) 6 f(B) must be respected. To achieve this goal on
any dissimilarity, the LW algorithm must be monotonic [Dragut, 2001]:

(i) α(u, w) + α(1 − u, w) + β(u, 1 − u, w) > 1
(ii) α(u, w) > 1
(iii) γ(w) > max{−α(u, w),−α(1 − u, w)}

Many aggregation functions cannot be written as LW functions, but can
be used to produce an indexed hierarchy. It is the case for any internal

aggregation function. A family of AHC algorithms based on median functions
have been studied in [Osswald, 2003].

3 Data

The database contains 26 sonar images provided by the GESMA (Groupe
d’Études Sous-Marine de l’Atlantique). Theses images were obtained with a
Klein 5400 sonar with a resolution of 20 until 30 cm in azimuth and 3 cm in
range. The sea-bottom deep was between 15 m and 40 m.

These 26 sonar images of different sizes (about 92 m width and 92 m to
322 m length) have been segmented in small-images with a size of 64x384
pixels (i.e. of approximately 1152 cm × 1152 cm). We have obtained 4003
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Cobble Ripple

Rock Sand and Rock

Fig. 1. Sonar image example (provided by the GESMA) and extracted and seg-
mented small-images examples.

small-images. On table 1 we show a sonar image and a sample of these
small-images represented in order to obtain a size of 64x64 pixels.

Each small-image is characterized manually by the type of sediment (rock,
cobbles, sand, ripple, silt) or shadow when the information is unknown (see
Table 1). Moreover the existence of more than one kind of sediment on the
small-image is indicated. In this case the type of sediment affected to the
small-image is the most present.

Sediment % code % patchworked

Sand 56.06 s 32.00

Rock 19.91 r 43.29

Ripple 9.34 p 61.50

Shadow 8.02 o 47.66

Silt 5.85 i 35.04

Cobble 0.82 c 84.85

Table 1. Percentage and code of type of sediment

From Table 1 we note that the sand sediment is the most represented one.
The cobbles sediment is particularly few represented. One of the difficulties
of classification step comes from this difference.

There is 38.87% of small-image with more than one kind of sediment
(named patch-worked images).
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Note that such database is quite difficult to realize. Indeed, the expert
has a subjective experience, and can make a mistake for some small-images.

From these small-images, we have extracted texture features. Different
texture extraction methods are presented in [Martin et al., 2004]. Each
method allow to extract some features that can be redundant, but calcu-
lated differently. We choose here to use a wavelet transform.

Indeed, this approach can consider the translation invariance in the direc-
tions. The discrete translation invariant wavelet transform is based on the
choice of the optimal translation for each decomposition level. Each decom-
position level gives four new images on which three features are calculated:
the energy, the entropy and a mean. We keep a decomposition level of 3
giving 63 parameters.

So, each small-image is represented in a 63-space. We have calculated the
euclidean distance between each small-image: it is the initial dissimilarity
used by the AHC algorithms.

4 Usual clustering methods applied on small sonar

images

4.1 Some general properties of AHC algorithms

Dissimilarity induced by the single linkage algorithm has the property of be-
ing subdominant: it is the greatest ultrametric smaller than the original dis-
similarity. This constraint often leads to more efficient algorithms [Brucker,
2001]. In the case of ultrametrics, it leads to an algorithm in O(n2) operations
instead of O(n3) for the other LW algorithms.

The single linkage hierarchy is also known to have an unbalancing effect:
paths from leaves to root have often very different lengths. When A and B
are two non-trivial clusters, we also often have A ⊂ B or B ⊂ A. So it is hard
to separate objects into classes: partitions obtained from such a hierarchy are
composed of one huge class, and many very small ones.

Other AHC algorithm are not well-defined: applying twice the complete
linkage on a dataset may produce two distinct hierarchies, when the dis-
similarity d between clusters admits two minimums, and choosing a random
one can modify the hierarchy obtained. As our data is composed of floating
numbers calculated from real sonar data, the probability of having two min-
imum in our dissimilarity matrix is nearly 0, so the LW algorithm we use is
univocal, and produce binary hierarchies.

4.2 Exemples

Applied to our data, single linkage, complete linkage and Ward algorithm
give the trees of figure 2. Index used for the representation is cluster size,
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for the real index does not allow us to distinguish all the clusters, and the
following treatments will only use the clustering structure, not the indices.

We proceed by taking k small-images of each class (k is 4 for examples of
figure 2, 12 or 15 for figure 3 data). The proportion of patchworked images,
when allowed, is the same than in the original data. As there are only 5 not
patchworked cobble images, we consider classes of different size when dealing
with larger sets of not patchworked images.

patchworked images not patchworked images
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Fig. 2. Usual AHC algorithms applied on some small-images

5 Hierarchy quality

We consider that a hierarchy is efficient for seabed characterization if it con-
tains clusters that are representative of each sediment. An expert has defined
six classes M1, . . . , M6 of small-images, partitionning our data into six sedi-
ment classes. We search in the hierarchy H for clusters A that maximize the
quality of an association pattern A ↔ Mi, for i between 1 and 6.

Our concern is how the clusters of the hierarchy can be used as natural
clusters for the data. We limit our qualiy measures to the shape of the hierar-
chy, not its index. A standard (quadratic) distance between the ultrametric
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induced by the AHC algorithm and the original distance would not help us
to reach this goal. As we will see later, Ward’s method leads to the most effi-
cient hierarchies, but is space-dilatating. Such a measure would have favored
a AHC algorithm between single linkage and complete linkage.

5.1 Measure of hierarchy quality

Tan et al. [Tan et al., 2002] have made an exhaustive study of the measures
used to measure the quality of association patterns. To obtain a simple
measure, depending as little as possible on the size of the dataset, and possible
to combine by multiplication, we choose the Jaccard measure, where P (A) is
the proportion of elements of A in the dataset:

ζ(A ↔ Mi) =
P (A ∩ Mi)

P (A) + P (Mi) − P (A ∩ Mi)

Combined on a hierarchy, we obtain the quality measure q(H). Bold
clusters on figure 2 are the clusters maximizing the ζ measure for at least one
type of sediment.

q(H) =

6∏

i=1

max
A∈H

ζ(A ↔ Mi)

What is used in the characterization step is not usually a pattern
A ↔ Mi but a rule A → Mi. As we do not need (and often not want to
have) a symmetrical measure for A and Mi, we should use an association
rule measure instead of an association pattern measure.

As we want to avoid too small rules, i.e. A → Mi with |A| � |Mi|, our
measure must take into account the unexplained examples, i.e. elements of

Mi which are not in A. The Confidence measure (c((A ↔ Mi) = 1− P (A∩Mi)
P (A) )

and all the other similar measures are not accurate to achieve this duty (see
Vaillant et al., [Vaillant et al., 2004]). The Piatetsky-Shapiro measure, a non-
symmetrical extension of the support measure, seem to be the most accurate:
PS(A → Mi) = P (A)P (Mi) − P (A, Mi) where Mi is the complementary of
Mi.

5.2 Parameters for Lance-Williams algorithms

Lance and Williams functions associated to single linkage, complete linkage
and Ward’s method are given section 2.

We build a continuous family of LW algorithms containing those three
usual methods. In order to guarantee that α(u, w) + α(1 − u, w) + β(u, 1 −
u, w) > 1 and therefore that the AHC algorithm obtained is monotonic, we
use an intermediary link:
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αi(u, w) =
u + w/2

1 + w
βi(u, 1 − u, w) = 0 γi(w) = 0 pi = 2

We use three segments of the space of admissible monotonic LW algo-
rithms. The parameter x varies in [0, 1].

α(u, w) β(u, v, w) γ(w) p

Single to
Complete

1/2 0 x − 1/2 1

Complete to
Intermediary

(1 − x)/2+
x(u + w/2)/(1 + w)

0 (x − 1)/2 2

Intermediary
to Ward

(u + (1 + x)w/2)/(1 + w) −xw/(1 + w) 0 2

We apply this family to random restrictions of our set of small-images,
composed of pure small-images or a combination of pure and patchworked
small-images. We estimate the efficiency of the LW functions on these re-
strictions.

The quality measure relies on the form of the hierarchy: presence or
absence of a cluster. Let H(x) be the hierarchy produced by the LW algorithm
of parameter x. There exists reals x1 and x2 such that x1 < x < x2 and for
each t ∈]x1, x2[ we have H(t) = H(x). Therefore the quality measure q(H(x))
is locally constant.

On figure 3 we can note the Ward’s method is the best LW algorithm of
the family considered to classify our data. It is not possible to extend the
β function joining the intermediary linkage to Ward to x greater than 1, for
a value of β lesser than −w/(1 + w) would not respect the (i) condition of
monotonicity.

5.3 Use of optimized AHC algorithm for texture identification

To use the hierarchy as a characterization tool, we first optimize the LW
functions on a learning set. We merge this set with small-images whose class
is unknown, and we build a hierarchy on this new set, with the same LW
functions. Then we classify the unknown elements belonging to an optimal
class of a sediment type.

We use a set of 72 elements for learning purpose (12 of each sediment
type), allowing patchworked small-images, and we add 228 untagged ele-
ments. The procedure give us good results for silt and shadow. 100% of
small-images tagged by silt are effectivly silt, and 68% for shadow. Among
the 228 small-images to classify, 41 received a correct tag, 101 received one
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90 patchworked small-images, Jaccard measure

90 patchworked small-images, P.-S. measure

72 patchworked small-images, P.-S. measure

65 not patchworked small-images, Jaccard measure

single linkage complete linkage intermediary Ward

Fig. 3. Hierarchy quality

correct tag and one other tag, 75 received no correct tag and 11 received no
tag at all.

Most unclassified small-images are silt (but most silt is well-classified);
most ripples small-images are not correctly classified, but Martin et al.

showed that the wavelets are not an efficient features set to discriminate
ripples, as it is not rotation invariant.

6 Conclusion

This approach mixes non-supervised classification methods and supervised
classification goals. The supervised context allows us to optimize the AHC
parameters, and the tagging method used allow an image to receive one,
zero or more than one tag. In a system were several classifiers collaborate,
powerful fusion algorithms may use this information.

Here, Ward’s method is the most accurate. This may be because of the
way dissimilarity is calculated: inertia is closely related to euclidean model.
Maybe the fact our classes are of similar size is the origin: Ward’s criteria is
space-dilating, so it tends to build balanced hierarchies.
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