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Abstract – This paper presents a point of view to ad-

dress an application with the theory of belief functions

from a global approach. Indeed, in a belief application,

the definition of the basic belief assignments and the

tasks of reduction of focal elements number, discount-

ing, combination and decision, must be thought at the

same time. Moreover these tasks can be seen as a gen-

eral process of belief transfer.

The second aspect of this paper involves the introduc-

tion of the reliability in the combination rule directly

and not before. Indeed, in general, the discounting pro-

cess is made with a discounting factor that is a relia-

bility factor of the sources. Here we propose to include

in the combination rule an estimation of the reliability

based on a local conflict estimation.

Keywords: Belief function, reliability, conflict, com-
bination rule, Dempster-Shafer theory.

1 Introduction
The theory of belief functions, also called theory of ev-
idence or Dempster-Shafer theory [3, 20], is based on
the definition of basic belief assignments, we can see
as an extension of the probability measures. Indeed
basic belief assignments are defined on the power set
2Θ, where Θ is a frame of discernment, instead of Θ in
the probability theory. Therefore, the basic belief as-
signment is not an additive measure. From these basic
belief assignments, we can define more belief functions
and combination operators; allow information fusion,
data association, decision tasks, etc.

With this framework of belief functions, we can see
the combination of basic belief assignments as a transfer
of belief on a subset of the power set [17]. Indeed, dur-
ing the combination of basic belief assignments different
combination rules propose to share the belief by differ-
ent ways, especially to manage the conflict between the
sources [23, 9, 11, 19, 13]. Another common mean to
manage the conflict is the use of a discounting proce-
dure. This process consist in decreasing the basic beliefs

on precise focal elements and increase the basic beliefs
on imprecise focal elements such as the total ignorance
Θ.

The task of combination can be seen as a mapping
from s basic belief assignments defined on 2Θ, onto 2Θ.
Therefore the complexity of this task can be very im-
portant. This is the reason why we can reduce the
number of focal elements (i.e. elements with a non null
basic belief) [22, 21, 2, 5].

Finally, the belief functions are generally used to take
a decision. In the most of applications, the decision is
taken on one element of Θ and not 2Θ, by the credibility,
plausibility functions or by the pignistic probability [4,
18]. However, the decision can also be taken on all 2Θ

[1, 14]. Hence, the decision process is a mapping from
2Θ onto Θ or 2Θ.

In a belief application, the definition of the basic be-
lief assignments and all these previous tasks (reduction
of focal elements number, discounting, combination and
decision) must be thought in the same time. Moreover
these tasks can be seen as a general process of belief
transfer. In the first part of this paper we present how
we can formalize this belief transfer.

The second aspect of this paper involves the intro-
duction of the reliability in the combination rule. In-
deed, in general, the discounting process is made with
a discounting factor that is a reliability factor of the
sources. We have seen in [15] that a reliability can be
estimated from a conflict measure. These two notions
can be really near in a fusion process. Discounting pro-
cedure and combination rules are two means to manage
the conflict and can also be seen as two belief transfer
functions. Thus, we propose in this paper a formulation
for a combination rule including the reliability.

Thereby, the rest of the paper is organized as fol-
low: in the following section 2 we recall the theoretical
background on the theory of the belief functions and
we propose a general formulation for the belief trans-
fer. In section 3 we present a formulation in order to
address the discounting process and the combination in
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the same time. Therefore, the section 4 proposes a com-
bination rule including reliability: we first present the
two experts case, then we extend the rule for s experts.

2 Theory of the belief functions

2.1 Theoretical background

Let Θ be a frame of discernment. A basic belief as-

signment (bba) m is the mapping from elements of the
power set 2Θ onto [0, 1] such that:

∑

X∈2Θ

m(X) = 1. (1)

A focal element X is an element of 2Θ such that
m(X) 6= 0.

2.1.1 Discounting procedure

When we can quantify the reliability of each expert,
we can weaken the basic belief assignment before the
combination by the discounting procedure:

{

mα
j (X) = αjmj(X), ∀X ∈ 2Θ

r {Θ}
mα

j (Θ) = 1 − αj(1 − mj(Θ)).
(2)

mj and αj ∈ [0, 1] are respectively the bba and the dis-
counting factor of the expert j. αj is, in this case, the
reliability of the expert j, eventually as a function of
X ∈ 2Θ. This procedure has an impact on the level of
conflict appearing during the combination step and on
the belief interval given by both credibility and plausi-
bility functions. Note also that αj can depend on the
focal element X .

2.1.2 Reduction of focal elements number

Several approaches for the reduction of the focal ele-
ments number have been proposed in order to decrease
the complexity of the combination rule [22, 21, 2, 5]. All
these approaches are quite different. We do not present
their mechanism because this is not the topic of this pa-
per. However, some of them have ad hoc procedure, or
are based on optimization principles. Moreover, some
approaches are very depending on the combination rule.
Generally the wanted focal elements number is fixed.
Therefore this problem can be express as: how to trans-
fer the belief given by a belief function to some elements
of the power set in order to define another belief func-
tion with less focal elements.

2.1.3 Combination rules

Today there is a lot of combination rules in the belief
functions framework. Most of them are based on the
conjunction of the focal elements in order to increase
the belief on the most precise elements of the power
set. The conjunctive rule is given for two basic belief
assignments m1 and m2 and for all A ∈ 2Θ by:

mc(A) =
∑

B∩C=A

m1(B)m2(C). (3)

mc(∅) can be interpreted as a non-expected solution
and is generally called the global conflict of the com-
bination or the inconsistence of the combination. The
interpretation of mc(∅) and the transfer of this belief
on other elements of the power set gave birth to several
combination rules [23, 9, 11, 19, 13]. The equation (3)
can also be seen as a transfer of belief [17].

2.1.4 Decision process

From basic belief assignments, other belief functions
can be defined such as credibility and plausibility. The
credibility represents the intensity that the information
given by one expert supports an element of 2Θ, this is a
minimal belief function given from a bba for all X ∈ 2Θ

by:

bel(X) =
∑

Y ⊆X,Y 6=∅

m(Y ). (4)

The plausibility represents the intensity with which
there is no doubt on one element. This function is given
from a bba for all X ∈ 2Θ by:

pl(X) =
∑

Y ∈2Θ,Y ∩X 6=∅

m(Y ). (5)

If the credibility function provides a pessimistic de-
cision, the plausibility function is often too optimistic.
The pignistic probability [16] is generally considered as
a compromise. It is calculated from a basic belief as-
signment m for all X ∈ 2Θ, with X 6= ∅ by:

betP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1 − m(∅)
, (6)

where |X | is the cardinality of X .
In the most of applications, the decision is taken on

Θ and not 2Θ, thus the decided element is given by:

A = argmax
X∈Θ

fd(X), (7)

where fd is the decision function (credibility, plausibil-
ity, pignistic probability, etc.). The decision function
fd can also be interpreted as a transfer of belief.

2.2 Formulation of belief transfer

We have seen that the belief functions framework pro-
poses a lot of methods to discount the belief, to reduce
the number of focal elements, to combine the basic be-
lief assignments and to take a decision. The question of
“which one we must choice?” has no general response
and depends on the application. By analogy to the de-
cision theory or to the pattern recognition approaches,
we could propose a no free lunch theorem showing that
any combination rule is still better [6, 10].

In the theory of the belief functions, we can see all
the tasks of discounting, reducing the number of focal
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elements, combination and decision making as a trans-
fer of belief. A transfer of belief can be formalized as an
operator FT given by the mapping from the basic belief
assignments space onto the same space: mT = FT (m).
The set of focal elements of mT can be different of those
of m and reduced. However, generally we add informa-
tion; by example for the discounting process given by
the equation (2) can be written by mT = FT (m, α).
The focal elements are Θ and the same than with m.
For the reduction of the number of focal elements, we
can add the expected number of focal elements. In this
case the set of focal elements can be really different
from the initial set of m. The decision process includes
generally a belief transfer, with in parameter the set T
of elements of 2Θ on which we want take the decision.

For the combination, the transfer of belief is
a mapping from the space of s basic belief as-
signments onto the basic belief assignments space:
mT = FT (m1, . . . , ms).

Generally, the decision is made after the combination
whereas the reduction of the number of focal elements
and the discounting process are conducted before the
combination. However, these tasks are considered sep-
arately. All these tasks can be considered in a global
approach of transfer of belief.

Of course this is not easy to address a particular ap-
plication with a global approach. In the rest of the
paper we focus on one approach to address the dis-
counting process and the combination in the same time
introducing the reliability in the combination rule.

3 A formulation of the combina-

tion including the reliability
General formulations have been proposed in order to
represent the combination rules [1, 19, 13]. A general
formulation of a combination including reliability can
by done for all X ∈ 2Θ by:

m(X)=
∑

Y∈(2Θ)s

s
∏

j=1

mj(Yj)w(X,m(Y), T (Y), α(Y)), (8)

where Y = (Y1, . . . , Ys) is the responses of the s

experts and mj(Yj) the associated mass (m(Y) =
(m1(Y1), . . . , mj(Ys)), α is a matrix of terms αij of the
reliability of the expert j for the element i of 2Θ, and
T (Y) is the set of elements of 2Θ on which we can
transfer the masses mj(Yj) for the given Y vector.

3.1 Reliability estimation based on lo-

cal conflict

The goal to include the reliability in the combination
rule is motivated by a local estimation of the reliability.
In [15] an estimation of the reliability is proposed from
the conflict between experts. This conflict is given by
a distance between the basic belief assignments of the

experts. With the same idea, we can propose an esti-
mation of the reliability from a local measure of con-
flict. In [13], we introduced a local conflict function
based on the number of experts in conflict for each re-
sponse Yj ∈ 2Θ of all the experts j = 1, . . . , s, given by
the number of responses of the other experts in conflict
with j. The local conflict function fj is defined by the

mapping of (2Θ)s onto

[

0,
1

s

]

with:

fj(Y1, ..., Ys) =

∑s

i=1 1l{Yi∩Yj=∅}

s(s − 1)
. (9)

Therefore, we can propose a local estimation of the re-
liability αj(Y1, ..., YM ) given by the mapping of (2Θ)s

onto

[

0,
1

s

]

with:

αj(Y1, ..., Ys) =
1

s
− fj(Y1, ..., Ys)

=

s
∑

i=1,i6=j

1l{Yi∩Yj 6=∅}

s(s − 1)
.

(10)

The DPCR rule introduced in [13], based on this factor
αj , is a combination rule including the reliability.

Other local reliability estimations can be proposed
according to the application. The local reliability is
not necessary based on a local conflict in the rest of the
paper.

3.2 Examples

We can rewrite all the combination rules with this for-
mulation given by the equation (8). We present here
some examples.

The conjunctive rule of the equation (3), is given by:

w(X,m(Y), T (Y), α(Y)) = 1 if
s
∩

j=1
Yj = X (11)

where T (Y) =
s
∩

j=1
Yj and we do not consider α(Y).

The disjunctive rule [8] is given by:

w(X,m(Y), T (Y), α(Y)) = 1 if
s
∪

j=1
Yj = X (12)

where T (Y) =
s
∪

j=1
Yj and we do not consider α(Y).

The Dubois & Prade rule proposed in [9] is given by:

w(X,m(Y), T (Y), α(Y))=











1 if
s
∩

j=1
Yj =X ; X 6=∅

1 if
s
∪

j=1
Yj =X ; X=∅

(13)

where T (Y) = {
s
∩

j=1
Yj ,

s
∪

j=1
Yj} r ∅ and we do not con-

sider α(Y).

For the PCR6 rule introduced in [12], the weight
w(X,m(Y), T (Y), α(Y)) is given by:
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• 1 if
s
∩

j=1
Yj = X and X 6= ∅

•

M
∑

i=1

mi(X)

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))

, if Yi = X, i = 1, . . . , s,

and if
s
∩

j=1
Yj = ∅ where:

{

σi(j) = j, if j < i,

σi(j) = j + 1, if j ≥ i,
(14)

where T (Y) = {
s
∩

j=1
Yj , Y1, . . . , Ys} r ∅ and we do

not consider α(Y).

The rules introduced in [23, 11, 19, 13] can also be writ-
ten with the equation (8).

4 A combination rule including

reliability
Recently in [24, 25] some new combination rules are
proposed to redistribute the belief to subsets or to the
complementaries of the considered elements. Some of
these rules are build quite similarly to the proportional
conflict redistribution rules or to a mixed rule [7]. The
principle is based on the hypothesis that the belief on
the common part is strong and the belief on the other
part is weak. Consequently, the partial conflict between
focal elements is interpreted as total ignorance, and
when there is no partial conflict a part of the belief
is transferred onto the complementaries of the focal el-
ements.

The proposed idea in this paper is a combination
rule that transfer the basic belief on 2T

r {∅}, with
T = {Y1, . . . , Ys, Y1, . . . , Ys} (where Yj is the comple-
mentary of Yj), according to their basic belief and re-
liability αij , i = 1, . . . , |2Θ| an arbitrary order on 2Θ

and j = 1, . . . , s. Hence with the previous notations,
T (Y) = 2T

r {∅}.

4.1 Two experts case

We first explain the idea for two experts given a basic
belief assignment respectively on X and Y in 2Θ.

Hence T (X, Y ) = 2{X,Y,X,Y }
r {∅}. We note that

X ∪ X = Y ∪ Y = Θ, and X ∩ Y = X ∪ Y and if
X ∩ Y = ∅: X ∩ Y = X , Y ∩ X = Y and X ∪ Y = Θ.
Hence:

T (X, Y ) = {X, Y, X ∩ Y, X ∪ Y, X,

X ∩ Y, X ∪ Y, Y , Y ∩ X,

Y ∪ X, X ∪ Y , X ∩ Y , Θ}

If X ∩ Y 6= ∅, and if the reliability α1X = α2Y = 1
and if m1(X) = m2(Y ) = 1 then all the belief must be

transferred onto X∩Y . If the reliability α1X = α2Y = 1
but m1(X) 6= 1 and m2(Y ) 6= 1, then the experts are
not sure and a part of the mass m1(X).m2(Y ) can also
be transferred onto X∪Y . If for example α1X = 0 then
we should also transfer mass onto X.

If X ∩ Y = ∅, we have a partial conflict between the
experts. If the experts are reliable then, we can transfer
the mass onto X , Y or X ∪ Y , such as the DPCR [13].
If the experts are not sure then a part of the mass can
also be transferred onto the complementary of X and
Y . Therefore, we propose the function w given by the
following table if X ∩ Y = ∅:

X ∩ Y = ∅

element weight .N

X α1Xm1(X)

Y α2Y m2(Y )

X (1 − α1X)(1 − m1(X))

Y (1 − α2Y )(1 − m2(Y ))

X ∪ Y (1 − α1Xα2Y )(1 − m1(X)m2(Y ))

(1 − α1X)(1 − α2Y )

X∩Y 6=∅ (1 − m1(X))(1 − m2(Y ))

(1 − (1 − α1X)(1 − α2Y ))

X∪Y =Θ (1 − (1 − m1(X))(1 − m2(Y )))

The given weights have to be normalized by a factor
noted N in order to verify the equation (1).

A simple form of the function w could be given by
the following table if X ∩ Y 6= ∅:

X ∩ Y 6= ∅

element weight .N

X ∩ Y α1Xα2Y m1(X)m2(Y )

X ∪ Y (1 − α1Xα2Y )(1 − m1(X)m2(Y ))

In this form, if for example, the expert 1 is not reliable,
we do not transfer on X . This is the reason why if
X∩Y 6= ∅, we propose another function w given by the
table 1.

In this case the rule will have a behavior nearer the
average than the conjunctive rule because the weights
on X and Y are higher than the weight on X ∩ Y .
In order to avoid that, we can propose the function w

given by the table 2.
With these proposed tables we could also transfer ba-

sic belief when one of the basic belief is null or when
one of both considered element is empty. This is not
interesting for two reasons: to consider null basic belief
assignment means we are sure (or with a degree of re-
liability) that the belief is null. Therefore, if we cannot
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element weight .N

X ∩ Y α1Xα2Y m1(X)m2(Y )

X ∪ Y (1 − α1Xα2Y )(1 − m1(X)m2(Y ))

X α1Xm1(X)

Y α2Y m2(Y )

X 6= ∅ (1 − α1X)(1 − m1(X))

Y 6= ∅ (1 − α2Y )(1 − m2(Y ))

X ∩ Y 6= ∅ (1 − α1X)(1 − α2Y )(1 − m1(X))(1 − m2(Y ))

X ∪ Y (1 − (1 − α1X)(1 − α2Y ))(1 − (1 − m1(X))(1 − m2(Y )))

X ∪ Y (1 − α1X(1 − α2Y ))(1 − m1(X)(1 − m2(Y )))

X ∪ Y (1 − (1 − α1X)α2Y )(1 − (1 − m1(X))m2(Y ))

X ∩ Y 6= ∅ α1X(1 − α2Y )m1(X)(1 − m2(Y ))

X ∩ Y 6= ∅ (1 − α1X)α2Y (1 − m1(X))m2(Y )

Table 1: The weight function when X ∩ Y 6= ∅.

element weight .N

X ∩ Y α1Xα2Y m1(X)m2(Y )

X ∪ Y (1 − α1Xα2Y )(1 − m1(X)m2(Y ))

X (α1Xm1(X))2

Y (α2Y m2(Y ))2

X 6= ∅ ((1 − α1X)(1 − m1(X)))2

Y 6= ∅ ((1 − α2Y )(1 − m2(Y )))2

X ∩ Y 6= ∅ (1 − α1X)(1 − α2Y )(1 − m1(X))(1 − m2(Y ))

X ∪ Y (1 − (1 − α1X)(1 − α2Y ))(1 − (1 − m1(X))(1 − m2(Y )))

X ∪ Y (1 − α1X(1 − α2Y ))(1 − m1(X)(1 − m2(Y )))

X ∪ Y (1 − (1 − α1X)α2Y )(1 − (1 − m1(X))m2(Y ))

X ∩ Y 6= ∅ α1X(1 − α2Y )m1(X)(1 − m2(Y ))

X ∩ Y 6= ∅ (1 − α1X)α2Y (1 − m1(X))m2(Y )

Table 2: The weight function when X ∩ Y 6= ∅, with a conjunctive kind of behavior.
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give belief it becomes a problem, and we lost the inter-
est of the theory of belief functions in this case. If we
take into account empty complementary of elements,
we transfer more belief on the other element, because
X ∪∅ = X or X ∪∅ = X. Moreover, more elements are
considered and more complex is the combination rule.

As a result, we do not transfer basic belief if one
of the considered element is empty or has a null basic
belief assignment.

4.2 Some examples

In order to understand the principle of this rule, we
illustrate it with simple examples.

• if X ∩ Y = ∅ and α1X = α2Y = 1, then the only
weights are m1(X) and m2(Y ) respectively on X

and Y .

• if X ∩ Y = ∅, with α1X = 1 and α2Y = 0,
then the only weights are m1(X), (1 − m2(Y )),
m1(X)(1 − m2(Y )) and 1 − m1(X)m2(Y ) respec-
tively on X , Y , X ∩ Y and X ∪ Y .

• if X ∩ Y 6= ∅ and α1X = α2Y = 1, then the only
weights are m1(X)m2(Y ), m1(X) (or m1(X)2) and
m2(Y ) (or m2(Y )2) respectively on X ∩ Y , X and
Y .

• if X ∩ Y 6= ∅, α1X = 1 and α2Y = 0, then the
only weights are m1(X), (1 − m2(Y )), m1(X)(1 −
m2(Y )) and 1 − m1(X)m2(Y ) respectively on X ,
Y , X ∩ Y and X ∪ Y .

• if X ∩ Y = ∅ and m1(X)m2(Y ) = 1, then the only
weights are α1X and α2Y respectively on X and Y .

• if X ∩ Y 6= ∅ and m1(X)m2(Y ) = 1, then the only
weights are α1Xα2Y , α1X and α2Y respectively on
X ∩ Y , X and Y .

Lets consider a more complicated example, with
Θ = {θ1, θ2, θ3}, and the bbas and associated reliability
given by:

bba/reliability θ1 θ1 ∪ θ2 Θ

m1/α1 0.6 / 0.9 0.4 / 0.3

m2/α2 0.3 / 0.9 0.7 / 0.5

With the transfer based on the table 2 for the
X ∩ Y 6= ∅ case, we detail hereafter the transfer and
give the resulting bba:

θ1 θ2 θ1∪θ2 θ3 θ1∪θ3 θ2∪θ3 Θ

θ1,θ1∪θ2 0.44 0.01 0.23 0.01 0.53 0.71 0.80

θ1, Θ 0.48 0.02 1.53

Θ, θ1∪θ2 0.11 0.01 1.36

Θ, Θ 0.79

m 0.14 0.002 0.05 0.003 0.08 0.11 0.62

Therefore this rule has the capability to take into
account locally the conflict and reliability.

4.3 For s experts

We can propose many extensions to the two experts
case. We note Y1, . . . , Ys the responses of the experts,
with Yj ∈ 2Θ.

The function w of the equation (8) can be done by

the table 3, if
s
∩

j=1
Yj = ∅. In this case we transfer

the basic beliefs onto all the focal elements Yj , onto all
the complementaries of the focal elements Yj , onto the
union of the focal elements, onto all the combinations
of unions and intersections of focal elements and com-
plementaries of focal elements. The transferred mass
depends on the initial bba and reliability of the focal
element α. The principle is based on:

• For the complementaries of one focal element X ,
we consider 1-α for the reliability with α the relia-
bility of X , and we consider 1-m(X) for the bba.

• For the intersections: we do a product between
reliabilities, and between bbas.

• For the unions: we take a dual form with one minus
the product between reliabilities, and one minus
the product between bbas.

If
s
∩

j=1
Yj 6= ∅, we propose the function w given by the

table 4. The transfer of basic beliefs rests the same
than in the

s
∩

j=1
Yj = ∅ case.

Note that with this extension, T (Y) 6= 2{Y,Y}
r{∅},

but T (Y) ⊂ 2{Y,Y}
r {∅}.

5 Conclusion
This paper formulates the idea that all the tasks for an
application with the theory of belief functions must be
define in the same time. Therefore, all the approaches
to discount a basic belief assignment, to reduce the
number of focal elements, to combine the belief and to
take a decision have to be chosen jointly according to
the application. Moreover, all these tasks can be seen
as a function of belief transfer that we formalize.

A general approach for a given application is not
an easy work. Discounting procedure and combina-
tion rules are two means to manage the conflict and
can also be seen as two belief transfer functions. The
second part of this paper presents how to consider the
combination including the reliability often used in the
discounting process. Such combination rules have the
advantage to consider a local reliability. A local reliabil-
ity can be obtained from an estimation of local conflict
as we show before. We justify these kinds of combina-
tion rules with simple illustrative examples. However
more experiments on generated bbas or on real data
with precise applications are left for a future work.
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element weight .N

Yj αjYj
mj(Yj)

Yj (1 − αjYj
)(1 − mj(Yj))

n1

∪
j1=1

Yj1

⋃ n2

∪
j2=1

Yj2



1 −
n1
∏

j1=1

αj1Yj1

n2
∏

j2=1

(1 − αj2Yj2
)







1 −
n1
∏

j1=1

mj1(Yj1)

n2
∏

j2=1

(1 − mj2(Yj2))





with n1 + n2 = s

s
∪

j=1
Yj (1 −

s
∏

j=1

αjYj
)(1 −

s
∏

j=1

mj(Yj))

n1

∩
j1=1

Yj1

⋂ n2

∩
j2=1

Yj2

n1
∏

j1=1

αj1Yj1
mj1(Yj1)

n2
∏

j2=1

(1 − αj2Yj2
)(1 − mj2(Yj2 ))

if 6= ∅, with n1 + n2 = s

s
∩

j=1
Yj , if 6= ∅

ns
∏

j=1

(1 − αjYj
)(1 − mj(Yj))

s
∪

j=1
Yj



1 −
s

∏

j=1

(1 − αjYj
)







1 −
s

∏

j=1

(1 − mj(Yj))





Table 3: The weight function given in the case of s experts when
s
∩

j=1
Yj = ∅.

element weight .N

s
∩

j=1
Yj

s
∏

j=1

αjYj
mj(Yj))

s
∪

j=1
Yj (1 −

s
∏

j=1

αjYj
)(1 −

s
∏

j=1

mj(Yj))

Yj αjYj
mj(Yj)

Yj if 6= ∅ (1 − αjYj
)(1 − mj(Yj))

n1

∪
j1=1

Yj1

⋃ n2

∪
j2=1

Yj2



1 −
n1
∏

j1=1

αj1Yj1

n2
∏

j2=1

(1 − αj2Yj2
)







1 −
n1
∏

j1=1

mj1(Yj1)

n2
∏

j2=1

(1 − mj2(Yj2))





if 6= ∅, with n1 + n2 = s

n1

∩
j1=1

Yj1

⋂ n2

∩
j2=1

Yj2

n1
∏

j1=1

αj1Yj1
mj1(Yj1)

n2
∏

j2=1

(1 − αj2Yj2
)(1 − mj2(Yj2 ))

if 6= ∅, with n1 + n2 = s

s
∩

j=1
Yj , if 6= ∅

ns
∏

j=1

(1 − αjYj
)(1 − mj(Yj))

s
∪

j=1
Yj



1 −
s

∏

j=1

(1 − αjYj
)







1 −
s

∏

j=1

(1 − mj(Yj))





Table 4: The weight function given in the case of s experts when
s
∩

j=1
Yj 6= ∅.
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