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General combination rules for

qualitative and quantitative beliefs1

I. INTRODUCTION

Many fusion theories have been studied for the combination of the experts opinions expressed either quantitatively or

qualitatively such as voting rules [11], [30], possibility theory [6], [34], and belief functions theory [2], [17]. All these

fusion approaches can be divided basically into four steps: modelization, parameters estimation (depending on the model, not

always necessary)), combination and decision. The most difficult step is presumably the first one which depends highly on

the problem and application we have to cope with. However, it is only at the combination step that we can take into account

useful information such as the conflict (partial or total) between the experts and/or the specificity of the expert’s response.

The voting rules are not adapted to the modelization of conflict between experts [30]. Although both possibility and

probability-based theories can model imprecise and uncertain data at the same time, in many applications, the experts are

only able to express their “certainty” (or belief) only from their partial knowledge, experience and from their own perception

of the reality. In such context, the belief function-based theories provide an appealing general mathematical framework for

dealing with quantitative and qualitative beliefs.

In this paper we present the most recent advances in belief functions theory for managing the conflict between the sources of

evidence/experts and their specificity. For the first time in the literature both the quantitative and qualitative aspects of beliefs

are presented in a unified mathematical framework. This paper actually extends two papers [13], [15] presented during the

10th International Conference on Information Fusion (Fusion 2007) in Québec City, Canada on July 9-12, 2007 in the session

“Combination in Evidence Theory”.

Section II briefly recalls the basis of belief functions theories, i.e. the Mathematical Theory of Evidence or Dempster-Shafer

theory (DST) developed by Shafer in 1976 [2], [17], and its natural extension called Dezert-Smarandache Theory (DSmT) [18],

[19]. We introduce in this section the notion of quantitative and qualitative beliefs and the operators on linguistic labels for

dealing directly with qualitative beliefs. Section III presents the main classical quantitative combination rules used so far, i.e.

Dempster’s rule, Yager’s rule, Dubois-Prade’s rule and the recent Proportional Conflict Redistribution rules (PCR) proposed

by Smarandache and Dezert [21] and extended by Martin and Osswald in [19]. Some examples are given to illustrate how

these rules work. Section IV explains through different examples how all the classical quantitative combination rules can be

directly and simply translated/extended into the qualitative domain in order to combine easily any qualitative beliefs expressed

in natural language by linguistic labels. Section V proposes new general quantitative rules of combination which allow to take

into account both the discounting of the sources (if any) and the proportional conflict redistribution. The direct extension of

these general rules into the qualitative domain is then presented in details on several examples in section VI.

1Manuscript received September 24, 2007; released for publication August 5, 2008.

Refereeing of this contribution was handled by Fabio Roli.
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II. BASIS OF DST AND DSMT

A. Power set and hyper-power set

In DST framework, one considers a frame of discernment Θ = {θ1, . . . , θn} as a finite set of n exclusive and exhaustive

elements (i.e. Shafer’s model denoted M0(Θ)). The power set of Θ is the set of all subsets of Θ. The order of a power

set of a set of order/cardinality |Θ| = n is 2n. The power set of Θ is denoted 2Θ. For example, if Θ = {θ1, θ2}, then

2Θ = {∅, θ1, θ2, θ1 ∪ θ2}.

In DSmT framework, one considers Θ = {θ1, . . . , θn} be a finite set of n exhaustive elements only (i.e. free DSm-model

denoted Mf (Θ)). Eventually some integrity constraints can be introduced in this free model depending on the nature of the

problem of interest. The hyper-power set of Θ (i.e. the free Dedekind’s lattice) denoted DΘ [18] is defined as:

1) ∅, θ1, . . . , θn ∈ DΘ.

2) If A,B ∈ DΘ, then A ∩B, A ∪B ∈ DΘ.

3) No other elements belong to DΘ, except those obtained by using rules 1 or 2.

If |Θ| = n, then |DΘ| ≤ 22n . Since for any finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the hyper-power set of Θ. For example,

if Θ = {θ1, θ2}, then DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. The free DSm model Mf (Θ) corresponding to DΘ allows to work

with vague concepts which exhibit a continuous and relative intrinsic nature. Such concepts cannot be precisely refined in an

absolute interpretation because of the unreachable universal truth.

It is clear that Shafer’s modelM0(Θ) which assumes that all elements of Θ are truly exclusive is a more constrained model

than the free-DSm model Mf (Θ) and the power set 2Θ can be obtained from hyper-power set DΘ by introducing in Mf (Θ)

all exclusivity constraints between elements of Θ. Between the free-DSm model Mf (Θ) and Shafer’s model M0(Θ), there

exists a wide class of fusion problems represented in term of the DSm hybrid models denoted M(Θ) where Θ involves both

fuzzy continuous and discrete hypotheses. The main differences between DST and DSmT frameworks are (i) the model on

which one works with, and (ii) the choice of the combination rule and conditioning rules [18], [19]. In the sequel, we use the

generic notation GΘ for denoting either DΘ (when working in DSmT with free DSm model) or 2Θ (when working in DST

with Shafer’s model).

B. Quantitative basic belief assignment (bba)

The (quantitative) basic belief assignment (bba) m(.) has been introduced for the first time in 1976 by Shafer [17] in his

Mathematical Theory of Evidence (i.e. DST). m(.) is defined as a mapping function from 2Θ → [0, 1] provided by a given

source of evidence B satisfying the conditions:

m(∅) = 0, (1)

∑
A∈2Θ

m(A) = 1. (2)

The elements of 2Θ having a strictly positive mass are called focal elements of B. The set of focal elements of m(.) is

called the core of m(.) and is usually denoted F(m). The equation (1) corresponds to the closed-world assumption [17]. As
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introduced by Smets [24], we can also define the belief function only with:∑
A∈2Θ

m(A) = 1. (3)

and thus we can have m(∅) > 0, working with the open-world assumption. In order to change an open world to a closed

world, we can always add one extra closure element in the open discriminant space Θ. In the following, we assume that we

always work within a closed-world Θ.

The (quantitative) basic belief assignment (bba) m(.) can also be defined similarly in the DSmT framework by working on

hyper-power set DΘ instead on classical power-set 2Θ as within DST. More generally for taking into account some integrity

constraints on (closed-world) Θ (if any), m(.) can be defined on GΘ as:

m(∅) = 0, (4)

∑
A∈GΘ

m(A) = 1. (5)

The conditions (1)-(5) give a large panel of definitions of the belief functions, which is one of the difficulties of the theories.

From any basic belief assignments m(.), other belief functions can be defined such as the credibility Bel(.) and the plausibility

Pl(.) [17], [18] which are in one-to-one correspondence with m(.).

After combining several bba’s provided by several sources of evidence into a single one with some chosen fusion rule

(see next section), one usually has also to make a final decision to select the “best” hypothesis representing the unknown

truth for the problem under consideration. Several approaches are generally adopted for decision-making from belief functions

m(.), Bel(.) or Pl(.). The maximum of the credibility function Bel(.) is known to provide a pessimistic decision, while the

maximum of the plausibility function Pl(.) is often considered as too optimistic. A common solution for decision-making in

these frameworks is to use the pignistic probability denoted BetP(X) [24] which offers a good compromise between the max

of Bel(.) and the max of Pl(.). The pignistic probability in DST framework is given for all X ∈ 2Θ, with X 6= ∅ by:

BetP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |
|Y |

m(Y )
1−m(∅)

, (6)

for m(∅) 6= 1. The pignistic probability can also be defined in DSmT framework as well (see Chapter 7 of [18] for details).

When we can quantify/estimate the reliability of each source of evidence, we can weaken the basic belief assignment before

the combination by the classical discounting procedure [17]: m′(X) = αm(X), ∀X ∈ 2Θ \ {Θ}

m′(Θ) = αm(Θ) + 1− α.
(7)

α ∈ [0, 1] is the discounting factor of the source of evidence B that is in this case the reliability of the source of evidence B,

eventually as a function of X ∈ 2Θ. Same procedure can be applied for bba’s defined on GΘ in DSmT framework.
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C. Qualitative basic belief assignment (qbba)

1) Qualitative operators on linguistic labels: Recently Smarandache and Dezert [13], [19] have proposed an extension

of classical quantitative belief assignments and numerical operators to qualitative beliefs expressed by linguistic labels and

qualitative operators in order to be closer to what human experts can easily provide. In order to compute directly with

words/linguistic labels and qualitative belief assignments instead of quantitative belief assignments over GΘ, Smarandache

and Dezert have defined in [19] a qualitative basic belief assignment qm(.) as a mapping function from GΘ into a set of

linguistic labels L = {L0, L̃, Ln+1} where L̃ = {L1, · · · , Ln} is a finite set of linguistic labels and where n ≥ 2 is an

integer. For example, L1 can take the linguistic value “poor”, L2 the linguistic value “good”, etc. L̃ is endowed with a total

order relationship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln. To work on a true closed linguistic set L under linguistic addition and

multiplication operators, Smarandache and Dezert extended naturally L̃ with two extreme values L0 = Lmin and Ln+1 = Lmax,

where L0 corresponds to the minimal qualitative value and Ln+1 corresponds to the maximal qualitative value, in such a way

that L0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1, where ≺ means inferior to, less (in quality) than, or smaller than, etc. Labels L0, L1,

L2, . . . , Ln, Ln+1 are called linguistically equidistant if: Li+1 − Li = Li − Li−1 for all i = 1, 2, . . . , n where the definition

of subtraction of labels is given in the sequel by (14). In the sequel Li ∈ L are assumed linguistically equidistant2 labels such

that we can make an isomorphism between L = {L0, L1, L2, . . . , Ln, Ln+1} and {0, 1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1), 1},

defined as Li = i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1. Using this isomorphism, and making an analogy to the classical

operations of real numbers, we are able to justify and define precisely the following qualitative operators (or q-operators for

short):

• q-addition of linguistic labels:

Li + Lj =
i

n+ 1
+

j

n+ 1
=

i+ j

n+ 1
= Li+j , (8)

we set the restriction that i+ j < n+ 1; in the case when i+ j ≥ n+ 1 we restrict Li+j = Ln+1 = Lmax. This is the

justification of the qualitative addition we have defined.

• q-multiplication of linguistic labels3:

a) Since Li ·Lj = i
n+1 ·

j
n+1 = (i·j)/(n+1)

n+1 , the best approximation would be L[(i·j)/(n+1)], where [x] means the closest

integer to x (with [n+ 0.5] = n+ 1, ∀n ∈ IN), i.e.

Li · Lj = L[(i·j)/(n+1)]. (9)

For example, if we have L0, L1, L2, L3, L4, L5, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1, then L2 ·L3 =

L[(2·3)/5] = L[6/5] = L[1.2] = L1; using numbers: 0.4 · 0.6 = 0.24 ≈ 0.2 = L1; also L3 · L3 = L[(3·3)/5] = L[9/5] =

L[1.8] = L2; using numbers 0.6 · 0.6 = 0.36 ≈ 0.4 = L2.

b) A simpler approximation of the multiplication, but less accurate (as proposed in [19]) is thus:

Li · Lj = Lmin{i,j}. (10)

• Scalar multiplication of a linguistic label:

2If the labels are not equidistant, the q-operators still work, but they are less accurate.
3The q-multiplication of two linguistic labels defined here can be extended directly to the multiplication of n > 2 linguistic labels. For example the product

of three linguistic label will be defined as Li · Lj · Lk = L[(i·j·k)/(n+1)(n+1)], etc.
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Let a be a real number. We define the multiplication of a linguistic label by a scalar as follows:

a · Li =
a · i
n+ 1

≈


L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(11)

• Division of linguistic labels:

a) Division as an internal operator: / : L · L→ L. Let j 6= 0, then

Li/Lj =


L[(i/j)·(n+1)] if[(i/j) · (n+ 1)] < n+ 1,

Ln+1 otherwise.
(12)

The first equality in (12) is well justified because when [(i/j) · (n+ 1)] < n+ 1, one has:

Li/Lj =
i/(n+ 1)
j/(n+ 1)

=
(i/j) · (n+ 1)

n+ 1
= L[(i/j)·(n+1)].

For example, if we have L0, L1, L2, L3, L4, L5, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1, then:

L1/L3 = L[(1/3)·5] = L[5/3] = L[1.66] ≈ L2. L4/L2 = L[(4/2)·5] = L[2·5] = Lmax = L5 since 10 > 5.

b) Division as an external operator: � : L · L → R+. Let j 6= 0. Since Li � Lj = (i/(n+ 1))/(j/(n+ 1)) = i/j, we

simply define:

Li � Lj = i/j. (13)

Justification of b): When we divide say L4/L1 in the above example, we get 0.8/0.2 = 4, but no label is corresponding

to number 4 which is not included in the interval [0, 1], hence the division as an internal operator we need to get

as a response label, so in our example we approximate it to Lmax = L5, which is a very rough approximation!

Therefore, depending on the fusion combination rules, it may be better to consider the qualitative division as an

external operator, which gives us the exact result.

• q-subtraction of linguistic labels: − : L · L→ {L,−L},

Li − Lj =


Li−j if i ≥ j,

−Lj−i if i < j.

(14)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}. The q-subtraction above is well justified since when i ≥ j, one has

Li − Lj = i
n+1 −

j
n+1 = i−j

n+1 .

The previous qualitative operators are logical due to the isomorphism between the set of linguistic equidistant labels and a

set of equidistant numbers in the interval [0, 1]. These qualitative operators are built exactly on the track of their corresponding

numerical operators, so they are more mathematically defined than the ad-hoc definitions of qualitative operators proposed in

the literature so far. The extension of these operators for handling quantitative or qualitative enriched linguistic labels can be

found in [13].

Remark about doing multi-operations on labels:
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When working with labels, no matter how many operations we have, the best (most accurate) result is obtained if we do

only one approximation. That one should be at the end. For example, if we have to compute terms like LiLjLk/(Lp + Lq)

as for QPCR5 (see example in section IV), we compute all operations as defined above. Without any approximations (i.e. not

even calculating the integer part of indexes, neither replacing by n+ 1 if the intermediate results is bigger than n+ 1), so:

LiLjLk
Lp + Lq

=
L(ijk)/(n+1)2

Lp+q
= L (ijk)/(n+1)2

p+q ·(n+1)
= L (ijk)/(n+1)

p+q
= L ijk

(n+1)(p+q)
, (15)

and now, when all work is done, we compute the integer part of the index, i.e. [ ijk
(n+1)(p+q) ] or replace it by n+1 if the final result

is bigger than n+1. Therefore, the term LiLjLk/(Lp+Lq) will take the linguistic value Ln+1 whenever [ ijk
(n+1)(p+q) ] > n+1.

This method also insures us of a unique result, and it is mathematically closer to the result that would be obtained if working

with corresponding numerical masses. Otherwise, if one approximates either at the beginning or end of each operation or in

the middle of calculations, the inaccuracy propagates (becomes bigger) and we obtain different results, depending on the places

where the approximations were done. If we need to round the labels’ indexes to integer indexes, for a better accuracy of the

result, this rounding must be done at the very end. If we work with fractional/decimal indexes (therefore no approximations),

then we can normally apply the qualitative operators one by one in the order they are needed; in this way the quasi-normalization

is always kept.

2) Quasi-normalization of qm(.): There is no known way to define a normalized qm(.), but a qualitative quasi-normalization

[19], [23] is nevertheless possible when considering equidistant linguistic labels because in such case, qm(Xi) = Li, is

equivalent to a quantitative mass m(Xi) = i/(n+ 1) which is normalized if:∑
X∈GΘ

m(X) =
∑
k

ik/(n+ 1) = 1,

but this one is equivalent to: ∑
X∈GΘ

qm(X) =
∑
k

Lik = Ln+1.

In this case, we have a qualitative normalization, similar to the (classical) numerical normalization. However, if the previous

labels L0, L1, L2, . . ., Ln, Ln+1 from the set L are not equidistant, the interval [0, 1] cannot be split into equal parts according

to the distribution of the labels. Then it makes sense to consider a qualitative quasi-normalization, i.e. an approximation of

the (classical) numerical normalization for the qualitative masses in the same way:∑
X∈GΘ

qm(X) = Ln+1.

In general, if we don’t know if the labels are equidistant or not, we say that a qualitative mass is quasi-normalized when the above

summation holds. In the sequel, for simplicity, one assumes to work with quasi-normalized qualitative basic belief assignments.

From these very simple qualitative operators, it is possible to extend directly all the quantitative combination rules to their

qualitative counterparts as we will show in the sequel.
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3) Working with refined labels:

• We can further extend the standard labels (those with positive integer indexes) to refined labels, i.e. labels with frac-

tional/decimal indexes. In such a way, we get a more exact result, and the quasi-normalization is kept.

Consider a simple example: If L2 = good and L3 = best, then L2.5 = better, which is a qualitative (a refined label) in

between L2 and L3.

• Further, we consider the confidence degree in a label, and give more interpretations/approximations to the qualitative

information.

For example: L2/5 = (1/5) ·L2, which means that we are 20% confident in label L2; or L2/5 = (2/5) ·L1, which means

that we are 40% confident in label L1, so L1 is closer to reality than L2; we get 100% confidence in L2/5 = 1 · L2/5.

4) Working with non-equidistant labels: We are not able to find (for non-equidistant labels) exact corresponding numerical

values in the interval [0, 1] in order to reduce the qualitative fusion to a quantitative fusion, but only approximations. We,

herfore, prefer the use of labels.

III. CLASSICAL QUANTITATIVE COMBINATION RULES

The normalized conjunctive combination rule also called Dempster-Shafer (DS) rule is the first rule proposed in the belief

theory by Shafer following Dempster’s works in sixties [2]. In the belief functions theory one of the major problems is the

conflict repartition enlightened by the famous Zadeh’s example [35]. Since Zadeh’s paper, many combination rules have been

proposed, building a solution to this problem [4], [5], [7]–[9], [14], [20], [25], [26], [33]. In recent years, some unification rules

have been proposed [1], [12], [28]. We briefly browse the major rules developed and used in the fusion community working

with belief functions through last past thirty years (see [29] and [19] for a more comprehensive survey).

To simplify the notations, we consider only two independent sources of evidence B1 and B2 over the same frame Θ with

their corresponding bba’s m1(.) and m2(.). Most of the fusion operators proposed in the literature use either the conjunctive

operator, the disjunctive operator or a particular combination of them. These operators are respectively defined ∀A ∈ GΘ, by:

m∨(A) = (m1 ∨m2)(A) =
∑

X,Y ∈GΘ

X∪Y=A

m1(X)m2(Y ), (16)

m∧(A) = (m1 ∧m2)(A) =
∑

X,Y ∈GΘ

X∩Y=A

m1(X)m2(Y ). (17)

The global/total degree of conflict between the sources B1 and B2 is defined by :

k , m∧(∅) =
∑

X,Y ∈GΘ

X∩Y=∅

m1(X)m2(Y ). (18)

If k is close to 0, the bba’s m1(.) and m2(.) are almost not in conflict, while if k is close to 1, the bba’s are almost in

total conflict. Next, we briefly review the main common quantitative fusion rules encountered in the literature and used in
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engineering applications.

Example 1: Let’s consider the 2D frame Θ = {A,B} and two experts providing the following quantitative belief assignments

(masses) m1(.) and m2(.):

A B A ∪B

m1(.) 1/6 3/6 2/6

m2(.) 4/6 1/6 1/6

Table I

QUANTITATIVE INPUTS FOR EXAMPLE 1

The disjunctive operator yields the following result:

m∨(A) = m1(A)m2(A) = (1/6) · (4/6) = 4/36

m∨(B) = m1(B)m2(B) = (3/6) · (1/6) = 3/36

m∨(A ∪B) = m1(A)m2(B) +m1(B)m2(A)

+m1(A)m2(A ∪B) +m2(A)m1(A ∪B)

+m1(B)m2(A ∪B) +m2(B)m1(A ∪B)

+m1(A ∪B)m2(A ∪B)

= (1/6) · (1/6) + (3/6) · (4/6)

+ (1/6) · (1/6) + (4/6) · (2/6)

+ (3/6) · (1/6) + (1/6) · (2/6)

+ (2/6) · (1/6)

= 29/36

while the conjunctive operator yields:

m∧(A) = m1(A)m2(A) +m1(A)m2(A ∪B) +m2(A)m1(A ∪B)

= (1/6) · (4/6) + (1/6) · (1/6) + (4/6) · (2/6) = 13/36

m∧(B) = m1(B)m2(B) +m1(B)m2(A ∪B) +m2(B)m1(A ∪B)

= (3/6) · (1/6) + (3/6) · (1/6) + (1/6) · (2/6) = 8/36

m∧(A ∪B) = m1(A ∪B)m2(A ∪B) = (2/6) · (1/6) = 2/36
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m∧(A ∩B) , m∧(A ∩B) = m1(A)m2(B) +m2(B)m1(B)

= (1/6) · (1/6) + (4/6) · (3/6) = 13/36

• Dempster’s rule [3]:

This combination rule has been initially proposed by Dempster and then used by Shafer in DST framework. We assume

(without loss of generality) that the sources of evidence are equally reliable. Otherwise a discounting preprocessing is first

applied. It is defined on GΘ = 2Θ by forcing mDS(∅) , 0 and ∀A ∈ GΘ \ {∅} by:

mDS(A) =
1

1− k
m∧(A) =

m∧(A)
1−m∧(∅)

. (19)

When k = 1, this rule cannot be used. Dempster’s rule of combination can be directly extended for the combination of

N independent and equally reliable sources of evidence and its major interest comes essentially from its commutativity and

associativity properties. Dempster’s rule corresponds to the normalized conjunctive rule by reassigning the mass of total conflict

onto all focal elements through the conjunctive operator. The problem enlightened by the famous Zadeh’s example [35] is

the repartition of the global conflict. Indeed, consider Θ = {A,B,C} and two experts opinions given by m1(A) = 0.9,

m1(C) = 0.1, and m2(B) = 0.9, m2(C) = 0.1, the mass given by Dempster’s combination is mDS(C) = 1 which looks

very counter-intuitive since it reflects the minority opinion. The generalized Zadeh’s example proposed by Smarandache and

Dezert in [18], shows that the results obtained by Dempster’s rule can moreover become totally independent of the numerical

values taken by m1(.) and m2(.) which is much more surprising and difficult to accept without reserve for practical fusion

applications. To resolve this problem, Smets [25] suggested in his Transferable Belief Model (TBM) framework [27] to consider

Θ as an open-world and therefore to use the conjunctive rule instead Dempster’s rule at the credal level. At credal level m∧(∅)

is interpreted as a non-expected solution. The problem is actually just postponed by Smets at the decision/pignistic level since

the normalization (division by 1 −m∧(∅)) is also required in order to compute the pignistic probabilities of elements of Θ.

In other words, the non normalized version of Dempster’s rule corresponds to the Smets’ fusion rule in the TBM framework

working under an open-world assumption, i.e. mS(∅) = k = m∧(∅) and ∀A ∈ GΘ \ {∅}, mS(A) = m∧(A).

Example 2: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.

A ∩ B = ∅), then the conflicting quantitative mass k = m∧(A ∩ B) = 13/36 is redistributed to the sets A, B, A ∪ B

proportionally with their m∧(.) masses, i.e. m∧(A) = 13/36, m∧(B) = 8/36 and m∧(A ∪ B) = 2/36 respectively through

Demspter’s rule (19). One thus gets:

mDS(∅) = 0

mDS(A) = (13/36)/(1− (13/36)) = 13/23

mDS(B) = (8/36)/(1− (13/36)) = 8/23

mDS(A ∪B) = (2/36)/(1− (13/36)) = 2/23

If one prefers to adopt Smets’ TBM approach, at the credal level the empty set is now allowed to have positive mass. In this
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case, one gets:

mTBM (∅) = m∧(A ∩B) = 13/36

mTBM (A) = 13/36

mTBM (B) = 8/36

mTBM (A ∪B) = 2/36

• Yager’s rule [31]–[33]:

Yager admits that in case of high conflict Dempster’s rule provides counter-intuitive results. Thus, k plays the role of an

absolute discounting term added to the weight of ignorance. The commutative and quasi-associative4 Yager’s rule is given by

mY (∅) = 0 and ∀A ∈ GΘ \ {∅} by 
mY (A) = m∧(A)

mY (Θ) = m∧(Θ) +m∧(∅)
(20)

Example 3: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.

A∩B = ∅), then the conflicting quantitative mass k = m∧(A∩B) = 13/36 is transferred to total ignorance A∪B. One thus

gets:

mY (A) = 13/36

mY (B) = 8/36

mY (A ∪B) = (2/36) + (13/36) = 15/36

• Dubois & Prade’s rule [5]:

This rule supposes that the two sources are reliable when they are not in conflict and at least one of them is right when a

conflict occurs. Then if one believes that a value is in a set X while the other believes that this value is in a set Y , the truth

lies in X ∩Y as long X ∩Y 6= ∅. If X ∩Y = ∅, then the truth lies in X ∪Y . According to this principle, the commutative and

quasi-associative Dubois & Prade hybrid rule of combination, which is a reasonable trade-off between precision and reliability,

is defined by mDP (∅) = 0 and ∀A ∈ GΘ \ {∅} by

mDP (A) = m∧(A) +
∑

X,Y ∈GΘ

X∪Y=A
X∩Y=∅

m1(X)m2(Y ) (21)

In Dubois & Prade’s rule, the conflicting information is considered more precisely than in Dempster’s or Yager’s rules since

all partial conflicts involved the total conflict are taken into account separately through (21).

The repartition of the conflict is very important because of the non-idempotency of the rules (except the Denœux’ rule [4] that

can be applied when the dependency between experts is high) and due to the responses of the experts that can be conflicting.

Hence, we have defined the auto-conflict [16] in order to quantify the intrinsic conflict of a mass and the distribution of the

conflict according to the number of experts.

4quasi-associativity was defined by Yager in [33], and Smarandache and Dezert in [21].



11

Example 4: Taking back example 1 and assuming Shafer’s model for Θ, the quantitative Dubois & Prade’s rule gives the same

result as quantitative Yager’s rule since the conflicting mass, m∧(A ∩ B) = 13/36, is transferred to A ∪ B, while the other

quantitative masses remain unchanged.

• Proportional Conflict Redistribution rules (PCR):

PCR5 for combining two sources

Smarandache and Dezert proposed five proportional conflict redistribution (PCR) methods [20], [21] to redistribute the partial

conflict on the elements implied in the partial conflict. The most efficient for combining two basic belief assignments m1(.)

and m2(.) is the PCR5 rule given by mPCR5(∅) = 0 and for all X ∈ GΘ, X 6= ∅ by:

mPCR5(X) = m∧(X) +
∑
Y ∈GΘ

X∩Y≡∅

(
m1(X)2m2(Y )
m1(X)+m2(Y )

+
m2(X)2m1(Y )
m2(X)+m1(Y )

)
, (22)

where m∧(.) is the conjunctive rule given by the equation (17).

Example 5: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.

A ∩ B = ∅), then the conflicting quantitative mass k = m∧(A ∩ B) = 13/36 is redistributed only to elements involved in

conflict, A and B (not to A ∪B). We repeat that:

m∧(A ∩B) = m1(A)m2(B) +m2(B)m1(B) = (1/6) · (1/6) + (4/6) · (3/6) = 13/36.

So (1/6) · (1/6) = 1/36 is redistributed to A and B proportionally to their quantitative masses assigned by the sources (or

experts) m1(A) = 1/6 and m2(B) = 1/6:

x1,A

1/6
=
y1,B

1/6
=

1/36
(1/6) + (1/6)

= 1/12,

hence

x1,A = (1/6) · (1/12) = 1/72,

and

y1,B = (1/6) · (1/12) = 1/72.

Similarly (4/6) · (3/6) = 12/36 is redistributed to A and B proportionally to their quantitative masses assigned by the sources

(or experts) m2(A) = 4/6 and m1(B) = 3/6:

x2,A

4/6
=
y2,B

3/6
=

12/36
(4/6) + (3/6)

= 2/7,

hence

x2,A = (4/6) · (2/7) = 4/21,

and

y2,B = (3/6) · (2/7) = 1/7.
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It is easy to check that

x1,A + y1,B + x2,A + y2,B = 13/36 = m∧(A ∩B)

Summing, we get:

mPCR5(A) = (13/36) + (1/72) + (4/21) = 285/504 ' 0.57

mPCR5(B) = (8/36) + (1/72) + (1/7) = 191/504 ' 0.38

mPCR5(A ∪B) = 2/36 ' 0.05

mPCR5(A ∩B = ∅) = 0

PCR6 for combining more than two sources

A generalization of PCR5 fusion rule for combining altogether more than two experts has been proposed by Smarandache

and Dezert in [21]. Recently Martin and Osswald [14], [16] studied and formulated a new version of the PCR5 rule, denoted

PCR6, for combining more than two sources, say M sources with M ≥ 2. Martin and Osswald have shown that PCR6

exhibits a better behavior than PCR5 in specific interesting cases. PCR6 rule is defined as follows: mPCR6(∅) = 0 and for

all X ∈ GΘ, X 6= ∅,

mPCR6(X) = m∧(X) +
M∑
i=1

mi(X)2
∑

M−1
∩
k=1

Yσi(k)∩X≡∅

(Yσi(1),...,Yσi(M−1))∈(GΘ)M−1


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+
M−1∑
j=1

mσi(j)(Yσi(j))

, (23)

where Yj ∈ GΘ is the response of the expert j, mj(Yj) the associated belief function and σi counts from 1 to M avoiding i: σi(j) = j if j < i,

σi(j) = j + 1 if j ≥ i.
(24)

The idea is here to redistribute the masses of the focal elements giving a partial conflict proportionally to the initial masses

on these elements.

In general, for M ≥ 3 sources, one calculates the total conflict, which is a sum of products; if each product is formed by

factors of masses of distinct hypothesis, then PCR6 coincides with PCR5; if at least a product is formed by at least two

factors of masses of same hypotheses, then PCR6 is different from PCR5:

• for example: a product like m1(A)m2(A)m3(B), herein we have two masses of hypothesis A;

• or m1(A ∪B)m2(B ∪ C)m3(B ∪ C)m4(B ∪ C), herein we have three masses of hypothesis B ∪ C from four sources.

Example 6: For instance, consider three experts expressing their opinion on Θ = {A,B,C,D} in the Shafer’s model:

The global conflict is given here by 0.21+0.14+0.09=0.44, coming from:

- A, B and A ∪ C for the partial conflict 0.21,

- A, B and A ∪B ∪ C ∪D for 0.14,
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A B A ∪ C A ∪B ∪ C ∪D

m1(.) 0.7 0 0 0.3

m2(.) 0 0.5 0 0.5

m3(.) 0 0 0.6 0.4

Table II

QUANTITATIVE INPUTS FOR EXAMPLE 6

- and B, A ∪ C and A ∪B ∪ C ∪D for 0.09.

With the generalized PCR6 rule (23), we obtain:

mPCR6(A) = 0.14 + 0.21 + 0.21 · 7
18

+ 0.14 · 7
16
' 0.493

mPCR6(B) = 0.06 + 0.21 · 5
18

+ 0.14 · 5
16

+ 0.09 · 5
14
' 0.194

mPCR6(A ∪ C) = 0.09 + 0.21 · 6
18

+ 0.09 · 6
14
' 0.199

mPCR6(A ∪B ∪ C ∪D) = 0.06 + 0.14 · 4
16

+ 0.09 · 3
14
' 0.114

Example 7: Let’s consider three sources providing quantitative belief masses only on unions.

A ∪B B ∪ C A ∪ C A ∪B ∪ C

m1(.) 0.7 0 0 0.3

m2(.) 0 0 0.6 0.4

m3(.) 0 0.5 0 0.5

Table III

QUANTITATIVE INPUTS FOR EXAMPLE 7

The conflict is given here by:

m∧(∅) = m1(A ∪B)m2(A ∪ C)m3(B ∪ C) = 0.7 · 0.6 · 0.5 = 0.21

With the generalized PCR rule, i.e. PCR6, we obtain:

mPCR6(A) = 0.21,

mPCR6(B) = 0.14,

mPCR6(C) = 0.09,

mPCR6(A ∪B) = 0.14 + 0.21.
7
18
' 0.2217,

mPCR6(B ∪ C) = 0.06 + 0.21.
5
18
' 0.1183,

mPCR6(A ∪ C) = 0.09 + 0.21.
6
18

= 0.16,

mPCR6(A ∪B ∪ C) = 0.06.

In the sequel, we use the notation PCR for two and more sources.
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IV. CLASSICAL QUALITATIVE COMBINATION RULES

The classical qualitative combination rules are direct extensions of classical quantitative rules presented in previous section.

Since the formulas of qualitative fusion rules are the same as for quantitative rules, they will be not reported in this section.

The main difference between quantitative and qualitative approaches lies in the addition, multiplication and division operators

one has to use. For quantitative fusion rules, one uses addition, multiplication and division operators on numbers while for

qualitative fusion rules one uses the addition, multiplication and division operators on linguistic labels defined as in section II-C1.

Example 8: Below is a very simple example used to show how classical qualitative fusion rules work. Let’s consider the

following set of linguistic labels L = {Lmin = L0, L1, L2, L3, L4, L5, Lmax = L6} and let’s assume Shafer’s model for

the frame Θ = {A,B} we want to work on. In this example, we consider only two experts providing the qualitative belief

assignments (masses) qm1(.) and qm2(.) such that:

A B A ∪B

qm1(.) L1 L3 L2

qm2(.) L4 L1 L1

Table IV

QUALITATIVE INPUTS FOR EXAMPLE 8

The qualitative belief assignments qm1(.) and qm2(.) have been chosen quasi-normalized since L1 + L3 + L2 = L6 = Lmax

and respectively L4 + L1 + L1 = L6 = Lmax.

• Qualitative Conjunctive rule (QCR): This rule provides qm∧(.) according following derivations:

qm∧(A) = qm1(A)qm2(A) + qm1(A)qm2(A ∪B) + qm2(A)qm1(A ∪B)

= L1L4 + L1L1 + L4L2 = L 1·4
6

+ L 1·1
6

+ L 4·2
6

= L 4+1+8
6

= L 13
6

qm∧(B) = qm1(B)qm2(B) + qm1(B)qm2(A ∪B) + qm2(B)qm1(A ∪B)

= L3L1 + L3L1 + L1L2 = L 3·1
6

+ L 3·1
6

+ L 1·2
6

= L 3+3+2
6

= L 8
6

qm∧(A ∪B) = qm1(A ∪B)qm2(A ∪B) = L2L1 = L 2·1
6

= L 2
6

qm∧(A ∩B) = qm1(A)qm2(B) + qm2(B)qm1(B) = L1L1 + L4L3 = L 1·1
6

+ L 4·3
6

= L 1+12
6

= L 13
6

We see that not approximating the indexes (i.e. working with refined labels), the quasi-normalization of the qualitative

conjunctive rule is kept:

L 13
6

+ L 8
6

+ L 2
6

+ L 13
6

= L 36
6

= L6 = Lmax.

But if we approximate each refined label, we get:

L[ 13
6 ] + L[ 8

6 ] + L[ 2
6 ] + L[ 13

6 ] = L2 + L1 + L0 + L2 = L5 6= L6 = Lmax.

Let’s examine the transfer of the conflicting qualitative mass qm∧(A∩B) = qm∧(∅) = L 13
6

to the non-empty sets according

to the main following combination rules:
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• Qualitative Dempster’s rule (extension of classical numerical DS rule to qualitative masses): Assuming Shafer’s model for

the frame Θ (i.e. A ∩ B = ∅) and according to DS rule, the conflicting qualitative mass qm∧(A ∩ B) = L 13
6

is redistributed

to the sets A, B, A ∪B proportionally with their qm∧(.) masses L 13
6

, L 8
6

, and L 2
6

respectively:

xA
L 13

6

=
yB
L 8

6

=
zA∪B
L 2

6

=
L 13

6

L 13
6

+ L 8
6

+ L 2
6

=
L 13

6

L 23
6

= L( 13
6 ÷

23
6 )·6 = L( 13

23 )·6 = L 78
23

Therefore, one gets:

xA = L 13
6
· L 78

23
= L( 13

6 ·
78
23 )÷6 = L 169

138

yB = L 8
6
· L 78

23
= L( 8

6 ·
78
23 )÷6 = L 104

138

zA∪B = L 2
6
· L 78

23
= L( 2

6 ·
78
23 )÷6 = L 26

138

We can check that the qualitative conflicting mass, L 13
6

, has been proportionally split into three qualitative masses:

L 169
138

+ L 104
138

+ L 26
138

= L 169+104+26
138

= L 299
138

= L 13
6

So:

qmDS(A) = L 13
6

+ L 169
138

= L 13
6 + 169

138
= L 468

138

qmDS(B) = L 8
6

+ L 104
138

= L 8
6 + 104

138
= L 288

138

qmDS(A ∪B) = L 2
6

+ L 26
138

= L 2
6 + 26

138
= L 72

138

qmDS(A ∩B = ∅) = L0

qmDS(.) is quasi-normalized since:

L 468
138

+ L 288
138

+ L 72
138

= L 828
138

= L6 = Lmax.

If we approximate the linguistic labels L 468
138

, L 288
138

and L 72
138

in order to work with original labels in L, still qmDS(.) remains

quasi-normalized since:

qmDS(A) ≈ L[ 468
138 ] = L3

qmDS(B) ≈ L[ 288
138 ] = L2

qmDS(A ∪B) ≈ L[ 72
138 ] = L1

and L3 + L2 + L1 = L6 = Lmax.

• Qualitative Yager’s rule:
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With Yager’s rule, the qualitative conflicting mass L 13
6

is entirely transferred to the total ignorance A ∪B, so:

qmY (A ∪B) = L 2
6

+ L 13
6

= L 15
6

and

qmY (A ∩B) = qmY (∅) = L0

while the others remain the same:

qmY (A) = L 13
6

qmY (B) = L 8
6

qmY (.) is quasi-normalized since:

L 13
6

+ L 8
6

+ L 15
6

= L 36
6

= L6 = Lmax.

If we approximate the linguistic labels L 13
6

, L 8
6

and L 15
6

, still qmY (.) happens to remain quasi-normalized since:

qmY (A) ≈ L[ 13
6 ] = L2

qmY (B) ≈ L[ 8
6 ] = L1

qmY (A ∪B) ≈ L[ 15
6 ] = L3

and L2 + L1 + L3 = L6 = Lmax.

• Qualitative Dubois & Prade’s rule: In this example the Qualitative Dubois & Prade’s rule gives the same result as qualitative

Yager’s rule since the conflicting mass, qm∧(A∩B) = L 13
6

, is transferred to A∪B, while the other qualitative masses remain

unchanged.

• Qualitative Smets’ TBM rule: Smets’ TBM approach allows keeping mass on the empty set. One gets:

qmTBM (A) = L 13
6

qmTBM (B) = L 8
6

qmTBM (A ∪B) = L 2
6

qmTBM (∅) = L 13
6

Of course qmTBM (.) is also quasi-normalized.

However if we approximate, qmTBM (.) does not remain quasi-normalized in this case since:

qmTBM (A) ≈ L[ 13
6 ] = L2

qmTBM (B) ≈ L[ 8
6 ] = L1

qmTBM (A ∪B) ≈ L[ 2
6 ] = L0

qmTBM (∅) ≈ L[ 13
6 ] = L2
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and L2 + L1 + L0 + L2 = L5 6= L6 = Lmax.

• Qualitative PCR (QPCR): The conflicting qualitative mass, qm∧(A∩B) = L 13
6

, is redistributed only to elements involved

in conflict, A and B (not to A ∪B). We repeat that

qmPCR(A ∩B) = qm1(A)qm2(B) + qm2(B)qm1(B)

= L1L1 + L4L3 = L 1·1
6

+ L 4·3
6

= L 1+12
6

= L 13
6

So L 1
6

is redistributed to A and B proportionally to their qualitative masses assigned by the sources (or experts) qm1(A) = L1

and qm2(B) = L1:
x1,A

L1
=
y1,B

L1
=

L 1
6

L1 + L1
=
L 1

6

L2
= L( 1

6÷2)·6 = L 1
2

hence

x1,A = L1 · L 1
2

= L(1· 12 )÷6 = L 1
12

and

y1,B = L1 · L 1
2

= L 1
12

Similarly L 12
6

is redistributed to A and B proportionally to their qualitative masses assigned by the sources (or experts)

qm2(A) = L4 and qm1(B) = L3:

x2,A

L4
=
y2,B

L3
=

L 12
6

L4 + L3
=
L 12

6

L7
= L( 12

6 ÷7)·6 = L 12
7

hence

x2,A = L4 · L 12
7

= L(4· 12
7 )÷6 = L 8

7

and

y2,B = L3 · L 12
7

= L(3· 12
7 )÷6 = L 6

7

Summing, we get:

qmPCR(A) = L 13
6

+ L 1
12

+ L 8
7

= L 285
84

qmPCR(B) = L 8
6

+ L 1
12

+ L 6
7

= L 191
84

qmPCR(A ∪B) = L 2
6

= L 28
84

qmPCR(A ∩B = ∅) = L0

qmPCR(.) is quasi-normalized since:

L 285
84

+ L 191
84

+ L 28
84

= L 504
84

= L6 = Lmax.

However, if we approximate, it is not quasi-normalized any longer since:

L[ 285
84 ] + L[ 191

84 ] + L[ 28
84 ] = L3 + L2 + L0 = L5 6= L6 = Lmax.

In general, if we do not approximate, and we work with quasi-normalized qualitative masses, no matter what fusion rule

we apply, the result will be quasi-normalized. If we approximate, many times the quasi-normalization is lost.
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V. GENERALIZATION OF QUANTITATIVE FUSION RULES

In [1], [28] we can find two propositions of a general formulation of the combination rules. In the first one, Smets considers

the combination rules from a matrix notation and find the shape of this matrix according to some assumptions on the rule, such

as linearity, commutativity, associativity, etc. In the second one, a generic operator is defined from the plausibility functions.

A general formulation of the global conflict repartition have been proposed in [8], [12] for all X ∈ 2Θ by:

mc(X) = m∧(X) + w(X)m∧(∅), (25)

where
∑
X∈2Θ

w(X) = 1. The problem is the choice of the weights w(X).

A. How to choose conjunctive and disjunctive rules?

We have seen that conjunctive rule reduces the imprecision and uncertainty but can be used only if one of the experts is

reliable, whereas the disjunctive rule can be used when the experts are not reliable, but allows a loss of specificity.

Hence, Florea [7] proposes a weighted sum of these two rules according to the global conflict k = m∧(∅) given for X ∈ 2Θ

by:

mFlo(X) = β1(k)m∨(X) + β2(k)m∧(X), (26)

where β1 and β2 can admit k =
1
2

as symmetric weight:

β1(k) =
k

1− k + k2
,

β2(k) =
1− k

1− k + k2
.

(27)

Consequently, if the global conflict is high (k near 1) the behavior of this rule will give more importance to the disjunctive

rule. Thus, this rule considers the global conflict coming from the non-reliability of the experts.

In order to take into account the weights more precisely in each partial combination, we propose the following new rule.

For two basic belief assignments m1 and m2 and for all X ∈ GΘ, X 6= ∅ we have:

mMix(X) =
∑

Y1∪Y2=X

δ1(Y1, Y2)m1(Y1)m2(Y2) +
∑

Y1∩Y2=X

δ2(Y1, Y2)m1(Y1)m2(Y2). (28)

Of course, if δ1(Y1, Y2) = β1(k) and δ2(Y1, Y2) = β2(k) we obtain Florea’s rule. In the same manner, if δ1(Y1, Y2) =

1− δ2(Y1, Y2) = 0 we obtain the conjunctive rule and if δ1(Y1, Y2) = 1− δ2(Y1, Y2) = 1 the disjunctive rule. If δ1(Y1, Y2) =

1−δ2(Y1, Y2) = 1lY1∩Y2=∅ we retrieve Dubois and Prade’s rule and the partial conflict can be considered, whereas the rule (26).

The choice of δ1(Y1, Y2) = 1− δ2(Y1, Y2) can be done by a dissimilarity such as:

δ1(Y1, Y2) = δ(Y1, Y2) , 1− C(Y1 ∩ Y2)
min{C(Y1), C(Y2)}

, (29)

or

δ1(Y1, Y2) = η(Y1, Y2) , 1− C(Y1 ∩ Y2)
max{C(Y1), C(Y2)}

, (30)
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where C(Y1) is the cardinality of Y1. In the case of the DST framework, C(Y1) is the number of distinct elements of Y1. In the

case of the DSmT, C(Y1) is the DSm cardinality given by the number of parts of Y1 in the Venn diagram of the problem [18].

δ(., .) in (29) is actually not a proper dissimilarity measure (e.g. δ(Y1, Y2) = 0 does not imply Y1 = Y2), but η(., .) defined

in (30) is a proper dissimilarity measure. We can also take for δ2(Y1, Y2), the Jaccard’s distance, i.e. δ2(Y1, Y2) = d(Y1, Y2)

given by:

d(Y1, Y2) =
C(Y1 ∩ Y2)
C(Y1 ∪ Y2)

, (31)

used by [10] on the belief functions. Note that d is not a distance in the case of DSmT. Thus, if we have a partial conflict

between Y1 and Y2, C(Y1 ∩ Y2) = 0 and the rule transfers the mass on Y1 ∪ Y2. In the case Y1 ⊂ Y2 (or the contrary),

Y1 ∩ Y2 = Y1 and Y1 ∪ Y2 = Y2, so with δ1(., .) = δ(., .) the rule transfers the mass on Y1 and with δ1(., .) = 1 − d(., .) it

transfers the mass on Y1 and Y2 according to the ratio (C(Y1)/C(Y2)) of the cardinalities. In the case Y1 ∩ Y2 6= Y1, Y2 and ∅,

the rule transfers the mass on Y1 ∩ Y2 and Y1 ∪ Y2 according to δ(., .) and d(., .).

Example 9: (on the derivation of the weights)

Let’s consider a frame of discernment Θ = {A,B,C} in Shafer’s model (i.e. all intersections empty).

a) We compute the first similarity weights δ2(., .) = 1− δ(., .): since

δ2(., .) = 1− δ(., .) A B C A ∪B

A 1 0 0 1

B 0 1 0 1

C 0 0 1 0

A ∪B 1 1 0 1

Table V

VALUES FOR 1− δ(., .)

δ2(A,A) =
C(A ∩A)

min{C(A), C(A)}
=
C(A)
C(A)

= 1

δ2(A,B) =
C(A ∩B)

min{C(A), C(B)}
= 0

because A ∩B = ∅ and C(∅) = 0.

δ2(A,A ∪B) =
C(A ∩ (A ∪B))

min{C(A), C(A ∪B)}
=
C(A)
C(A)

= 1

etc.

Whence, the first dissimilarity weights δ1(., .) defined by (29), i.e. δ1(X,Y ) = 1− δ2(X,Y ) take the values:

The first similarity and dissimilarity weights δ2(., .) and δ1(., .) are not quite accurate, since for example: δ2(A,A∪B) = 1,

i.e. A and A ∪B are 100% similar (which is not the case since A 6= A ∪B) and δ1(A,A ∪B) = 1− δ2(A,A ∪B) =

1− 1 = 0, i.e. A and A ∪B are 100% dissimilar (which is not the case either since A ∩ (A ∪B) 6= ∅).
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δ1(., .) = δ(., .) A B C A ∪B

A 0 1 1 0

B 1 0 1 0

C 1 1 0 1

A ∪B 0 0 1 0

Table VI

VALUES FOR δ(., .)

b) The second similarity weights δ2(., .) = 1− η(., .) given by the equation (30) overcomes this problem. We obtain on the

previous example: since

δ2(., .) = 1− η(., .) A B C A ∪B

A 1 0 0 1/2

B 0 1 0 1/2

C 0 0 1 0

A ∪B 1/2 1/2 0 1

Table VII

VALUES FOR 1− η(., .)

δ2(A,A) = 1− η(A,A) =
C(A ∩A)

max{C(A), C(A)}
=
C(A)
C(A)

= 1

δ2(A,B) = 1− η(A,B) =
C(A ∩B)

max{C(A), C(B)}
= 0

because A ∩B = ∅ and C(∅) = 0.

δ2(A,A ∪B) = 1− η(A,A ∪B) =
C(A ∩ (A ∪B))

max{C(A), C(A ∪B)}
=

C(A)
C(A ∪B)

=
1
2

which is better than δ2(A,A ∪B) = 1− δ(A,A ∪B) = 1.

etc.

Whence, the second dissimilarity weights η(., .) take the values:

δ1(., .) = η(., .) A B C A ∪B

A 0 1 1 1/2

B 1 0 1 1/2

C 1 1 0 1

A ∪B 1/2 1/2 1 0

Table VIII

VALUES FOR η(., .)

η(A,A ∪B) = 1− 1
2 = 1

2 , which is better than δ1(A,A ∪B) = δ(A,A ∪B) = 0.

The second similarity weight coincides with Jaccard’s distance in Shafer’s model, but in hybrid and free models, they

are generally different. Hence if we consider a Shafer’s model, one gets for all Y1, Y2 in GΘ:

d(Y1, Y2) = 1− η(Y1, Y2).
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Smarandache defined in [22] the degree of intersection of two sets as Jaccard’s distance, and also the degree of union of

two sets, and the degree of inclusion of a set into another set and improved many fusion rules by inserting these degrees

in the fusion rules’ formulas.

Example 10: (with Shafer’s model)

Consider the following example for two (quantitative) experts providing m1(.) and m2(.) on Θ = {A,B,C} and let’s assume

that Shafer’s model holds (i.e. A, B and C are truly exclusive):

m1(.) m2(.) m∧ mMix,δ mMix,η

mMix,d

∅ 0 0 0.2 0 0

A 0.3 0 0.3 0.24 0.115

B 0 0.2 0.14 0.14 0.06

A ∪B 0.4 0 0.12 0.18 0.18

C 0 0.2 0.06 0.06 0.02

A ∪ C 0 0.3 0.09 0.15 0.165

A ∪B ∪ C 0.3 0.3 0.09 0.23 0.46

Table IX

QUANTITATIVE INPUTS AND FUSION RESULT

When taking δ1(., .) = δ(., .) according to (29), one obtains:

δ1(., .) = δ(., .) A A ∪B A ∪B ∪ C

B 1 0 0

C 1 1 0

A ∪ C 0 1/2 0

A ∪B ∪ C 0 0 0

Table X

VALUES FOR δ(., .)

where the columns are the focal elements of the basic belief assignment given by the expert 1 and the rows are the focal

elements of the basic belief assignment given by expert 2. The mass 0.2 on ∅ come from the responses A and C with a value

of 0.06, from the responses A and B with a value of 0.06 and from the responses A ∪B and C with a value of 0.08. These

three values are transferred respectively on A∪C, A∪B and A∪B ∪C. The mass 0.12 on A given by the responses A∪B

and A ∪ C is transferred on A with a value of 0.06 and on A ∪B ∪ C with the same value.

When taking δ1(., .) = η(., .) or δ1(., .) = 1− d(., .) according to (30) and (31), one obtains:

With δ1(., .) = η or δ1(., .) = 1− d(., .), the rule is more disjunctive: more masses are transferred on the ignorance.

Note that δ1(., .) = δ(., .) can be used when the experts are considered reliable. In this case, we consider the most precise
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δ1(., .) = η(., .)

δ1(., .) = 1− d(., .) A A ∪B A ∪B ∪ C

B 1 1/2 2/3

C 1 1 2/3

A ∪ C 1/2 2/3 1/3

A ∪B ∪ C 2/3 1/3 0

Table XI

VALUES FOR η(., .) OR 1− d(., .)

response. With δ1(., .) = η(., .) or δ1(., .) = 1 − d(., .), we get the conjunctive rule only when the experts provide the same

response, otherwise we consider the doubtful responses and we transfer the masses in proportion of the imprecision of the

responses (given by the cardinality of the responses) on the part in agreement and on the partial ignorance.

Example 11: (with a hybrid model)

Consider the same example with two (quantitative) experts providing m1(.) and m2(.) on the frame of discernment Θ =

{A,B,C} with the following integrity constraints: A ∩ B 6= ∅, A ∩ C = ∅ and B ∩ C = ∅ (which defines a so-called

DSm-hybrid model [18]):

m1(.) m2(.) m∧ mMix,δ mMix,η mMix,d

∅ 0 0 0.14 0 0 0

A ∩B 0 0 0.06 0.03 0.03 0.02

A 0.3 0 0.3 0.26 0.205 0.185

B 0 0.2 0.14 0.14 0.084 0.084

A ∪B 0.4 0 0.12 0.15 0.146 0.156

C 0 0.2 0.06 0.06 0.015 0.015

A ∪ C 0 0.3 0.09 0.15 0.1575 0.1575

A ∪B ∪ C 0.3 0.3 0.09 0.21 0.3625 0.3825

Table XII

QUANTITATIVE INPUTS AND FUSION RESULT

When taking δ1(., .) = δ(., .) according to (29), one obtains:

δ1(., .) = δ(., .) A A ∪B A ∪B ∪ C

B 1/2 0 0

C 1 1 0

A ∪ C 0 1/3 0

A ∪B ∪ C 0 0 0

Table XIII

VALUES FOR δ(., .)

When taking δ1(., .) = η(., .) according to (30), one obtains:
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δ1(., .) = η(., .) A A ∪B A ∪B ∪ C

B 1/2 1/3 1/2

C 1 1 3/4

A ∪ C 1/3 1/3 1/4

A ∪B ∪ C 1/2 1/4 0

Table XIV

VALUES FOR η(., .)

δ1(., .) = 1− d(., .) A A ∪B A ∪B ∪ C

B 2/3 1/3 1/2

C 1 1 3/4

A ∪ C 1/3 1/2 1/4

A ∪B ∪ C 1/2 1/4 0

Table XV

VALUES FOR 1− d(., .)

When taking δ1(., .) = 1− d(., .) according to (31), one obtains:

For more than two experts, say M > 2, if the intersection of the responses of the M experts is not empty, we can still

transfer on the intersection and the union, and the equations (29) and (30) become:

δ1(Y1, ..., YM ) = δ(Y1, ..., YM ) = 1− C(Y1 ∩ ... ∩ YM )
min

1≤i≤M
C(Yi)

, (32)

and

δ1(Y1, ..., YM ) = η(Y1, ..., YM ) = 1− C(Y1 ∩ ... ∩ YM )
max

1≤i≤M
C(Yi)

. (33)

From equation (31), we can define δ1 by:

δ1(Y1, ..., YM ) = 1− C(Y1 ∩ ... ∩ YM )
C(Y1 ∪ ... ∪ YM )

. (34)

Finally, the mixed rule for M ≥ 2 experts is given by:

mMix(X) =
∑

Y1∪...∪YM=X

δ1(Y1, ..., YM )
M∏
j=1

mj(Yj) +
∑

Y1∩...∩YM=X

(1− δ1(Y1, ..., YM ))
M∏
j=1

mj(Yj). (35)

This formulation can be interesting according to the coherence of the responses of the experts. However, it does not allow

the repartition of the partial conflict in an other way than the Dubois and Prade’s rule.

B. A discounting proportional conflict repartition rule

The PCR6 redistributes the masses of the conflicting focal elements proportionally to the initial masses on these elements.

First, the repartition concerns only on the elements involved in the partial conflict. We can apply a discounting procedure in

the combination rule in order to transfer a part of the partial conflict on the partial ignorance. This new discounting PCR

(noted DPCR) can be expressed for two basic belief assignments m1(.) and m2(.) and for all X ∈ GΘ, X 6= ∅ by:
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mDPCR(X) = m∧(X) +
∑
Y ∈GΘ

X∩Y≡∅

α ·
(
m1(X)2m2(Y )
m1(X) +m2(Y )

+
m2(X)2m1(Y )
m2(X)+m1(Y )

)

+
∑

Y1∪Y2=X
Y1∩Y2≡∅

(1− α) ·m1(Y1)m2(Y2), (36)

where α ∈ [0, 1] is the discounting factor. Note that we can also apply a discounting procedure on the masses before the

combination as shown in (7). Here the discounting factor is introduced in order to transfer a part of the partial conflict on

partial ignorance. We propose in (39) and (40) different ways for choosing this factor α.

Hence, DPCR fusion rule is a combination of PCR and Dubois-Prade (or DSmH5) rules. In an analogue way we can

combine other fusion rules, two or more in the same formula, getting new mixed formulas. So that in a general case, for

M ≥ 2 experts, we can extend the previous rule as:

mDPCR(X) = m∧(X) +
M∑
i=1

mi(X)2
∑

M−1
∩
k=1

Yσi(k) ∩X = ∅

(Yσi(1), ..., Yσi(M−1)) ∈ (GΘ)M−1

α ·


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X) +
M−1∑
j=1

mσi(j)(Yσi(j))



+
∑

Y1∪...∪YM=X
Y1∩...∩YM≡∅

(1− α) ·
M∏
j=1

mj(Yj), (37)

where Yj ∈ GΘ is a response of the expert j, mj(Yj) its assigned mass and σi is given by (24).

Hence, if we choose as discounting factor α = 0.9 in the previous example, we obtain:

mDPCR(A) = 0.14 + 0.21 + 0.21 · 7
18
· 0.9 + 0.14 · 7

16
· 0.9 ' 0.479

mDPCR(B) = 0.06 + 0.21 · 5
18
· 0.9 + 0.14 · 5

16
· 0.9 + 0.09 · 5

14
· 0.9 ' 0.181

mDPCR(A ∪ C) = 0.09 + 0.21 · 6
18
· 0.9 + 0.09 · 6

14
· 0.9 ' 0.187

mDPCR(A ∪B ∪ C) = 0.21 · 0.1 = 0.021

mDPCR(A ∪B ∪ C ∪D) = 0.06 + 0.14 · 4
16
· 0.9 + 0.09 · 3

14
· 0.9 + 0.14 · 0.1 + 0.09 · 0.1 ' 0.132

However, in this example, the partial conflict due to the experts 1, 2 and 3 saying A, B, and A∪C respectively, the conflict

is 0.21. Nonetheless, only the experts 1 and 2 and the experts 2 and 3 are in conflict. The experts 1 and 3 are not in conflict.

Now, consider another case where the experts 1, 2 and 3 say A, B, and C respectively with the same conflict 0.21. In both

cases, the DPCR rule transfers the masses with the same weight α. Although, we could prefer transfer more mass on Θ in

5The DSmH rule is an extension of Dubois-Prade’s rule which has been proposed in the DSmT framework in order to work with hybrid models including

non-existential constraints. See [18] for details and examples.
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the second than in the first case.

Consequently, the transfer of mass can depend on the existence of conflict between each pair of experts. We define the

conflict function giving the number of experts in conflict two by two for each response Yi ∈ GΘ of the expert i as the number

of responses of the other experts in conflict with i. A function fi is defined by the mapping of (GΘ)M onto
[
0,

1
M

]
with:

fi(Y1, ..., YM ) =

M∑
j=1

1l{Yj∩Yi=∅}

M(M − 1)
. (38)

Hence, we can choose α depending on the response of the experts such as:

α(Y1, ..., YM ) = 1−
M∑
i=1

fi(Y1, ..., YM ). (39)

In this case α ∈ [0, 1], we do not transfer the mass on elements that can be written as the union of the responses of the experts.

Therefore, if we consider again our previous example we obtain:

α(A,B,A ∪ C) = 1− 2
3

=
1
3
,

α(A,B,A ∪B ∪ C ∪D) = 1− 1
3

=
2
3
,

α(A ∪B ∪ C ∪D,B,A ∪ C) = 1− 1
3

=
2
3
.

Thus the provided mass by the DPCR is:

mDPCR(A) = 0.14 + 0.21 + 0.21 · 7
18
· 1

3
+ 0.14 · 7

16
· 2

3
' 0.418

mDPCR(B) = 0.06 + 0.21 · 5
18
· 1

3
+ 0.14 · 5

16
· 2

3
+ 0.09 · 5

14
· 2

3
' 0.130

mDPCR(A ∪ C) = 0.09 + 0.21 · 6
18
· 1

3
+ 0.09 · 6

14
· 2

3
' 0.139

mDPCR(A ∪B ∪ C) = 0.21 · 2
3

= 0.140

mDPCR(A ∪B ∪ C ∪D) = 0.06 + 0.14 · 4
16
· 2

3
+ 0.09 · 3

14
· 2

3
+ 0.14 · 1

3
+ 0.09 · 1

3
' 0.173

We want to take account of the degree of conflict (or non-conflict) within each pair of expert differently for each element.

We can consider the non-conflict function given for each expert i by the number of experts not in conflict with i. Hence, we

can choose αi(Y1, ..., YM ) defined by the mapping of (GΘ)M onto
[
0,

1
M

]
with:

αi(Y1, ..., YM ) =
1
M
− fi(Y1, ..., YM ) =

M∑
j=1,j 6=i

1l{Yj∩Yi 6≡∅}

M(M − 1)
. (40)

The discounting PCR rule (equation (37)) can be written for M experts, for all X ∈ GΘ, X 6= ∅ as:
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mDPCR(X) = m∧(X) +
M∑
i=1

mi(X)2
∑

M−1
∩
k=1

Yσi(k) ∩X = ∅

(Yσi(1), ..., Yσi(M−1)) ∈ (GΘ)M−1

αiλ


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+
M−1∑
j=1

mσi(j)(Yσi(j))



+
∑

Y1∪...∪YM=X
Y1∩...∩YM≡∅

(1−
M∑
i=1

αi)
M∏
j=1

mj(Yj), (41)

where αi(X,Yσi(1), ..., Yσi(M−1)) is noted αi for notations convenience and λ depending on (X,Yσi(1), ..., Yσi(M−1)), is

chosen to obtain the normalization given by the equation (2). λ is given when αi 6= 0, ∀i ∈ {1, ...,M} by:

λ =

M∑
i=1

αi

< α,γ >
, (42)

where < α,γ > is the scalar product of α = (αi)i∈{1,...,M} and γ = (γi)i∈{1,...,M} with:

γi =
mi(X)

mi(X)+
M−1∑
j=1

mσi(j)(Yσi(j))

, (43)

where γi(X,Yσi(1), ..., Yσi(M−1)) is noted γi for notations convenience.

With this last version of the rule, for αi given by the equation (40), we obtain on our illustrative example λ = 36
13 when the

experts 1, 2 and 3 say A, B, and A∪C respectively (the conflict is 0.21), λ = 16
5 when the conflict is 0.14 and λ = 56

17 when

the conflict is 0.09. Thus, the masses are given by:

mDPCR(A) = 0.14 + 0.21 + 0.21 · 7
18
· 1

6
· 36

13
+ 0.14 · 7

16
· 1

6
· 16

5
' 0.420

mDPCR(B) = 0.06 + 0.14 · 5
16
· 1

6
· 16

5
+ 0.09 · 5

14
· 1

6
· 56

17
' 0.101

mDPCR(A ∪ C) = 0.09 + 0.21 · 6
18
· 1

6
· 36

13
+ 0.09 · 6

14
· 1

6
· 56

17
' 0.143

mDPCR(A ∪B ∪ C) = 0.21 · 2
3

= 0.14

mDPCR(A ∪B ∪ C ∪D) = 0.06 + 0.14 · 4
16
· 1

3
· 16

5
+ 0.09 · 3

14
· 1

3
· 56

17
+ 0.14 · 1

3
+ 0.09 · 1

3
' 0.196

This last rule of combination allows one to consider a “kind of degree” of conflict (a degree of pair of non-conflict), but

this degree is not so easy to introduce in the combination rule.

C. A mixed discounting conflict repartition rule

In this section, we propose a combination of the mixed rule (35) with the discounting PCR (37). This new mixed discounting

conflict repartition rule (MDPCR for short) for two quantitative basic belief assignments m1(.) and m2(.) is defined by

mMDPCR(∅) = 0 and for all X ∈ GΘ, X 6= ∅ by:
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mMDPCR(X) =
∑

Y1∪Y2=X,
Y1∩Y2 6≡∅

δ1(Y1, Y2) ·m1(Y1)m2(Y2)

+
∑

Y1∩Y2=X,
Y1∩Y2 6≡∅

(1− δ1(Y1, Y2)) ·m1(Y1)m2(Y2)

+
∑

Y ∈GΘ,
X∩Y≡∅

α ·
(
m1(X)2m2(Y )
m1(X) +m2(Y )

+
m2(X)2m1(Y )
m2(X) +m1(Y )

)

+
∑

Y1∪Y2=X,
Y1∩Y2≡∅

(1− α) ·m1(Y1)m2(Y2). (44)

α can be given by the equation (39) and δ1(., .) by the equation (32) or (34). The weights must be taken in order to get a

kind of continuity between the mixed and DPCR rules. In actuality, when the intersection of the responses is almost empty

(but not empty) we use the mixed rule, and when this intersection is empty we chose the DPCR rule. In the first case, all the

mass is transferred on the union, and in the second case it will be the same according to the partial conflict. Indeed, α = 0

if the intersection is not empty and δ1 = 1 if the intersection is empty. We can also introduce αi given by the equation (40),

and this continuity is conserved.

This rule is given in a general case for M experts, by mMDPCR(∅) = 0 and for all X ∈ GΘ, X 6= ∅ by:

mMDPCR(X) =
∑

Y1∪...∪YM=X,
Y1∩...∩YM 6≡∅

δ1(Y1, . . . , YM ) ·
M∏
j=1

mj(Yj)

+
∑

Y1∩...∩YM=X,
Y1∩...∩YM 6≡∅

(1− δ1(Y1, . . . , YM )) ·
M∏
j=1

mj(Yj)

+
M∑
i=1

mi(X)2
∑

M−1
∩
k=1

Yσi(k) ∩X = ∅

(Yσi(1), ..., Yσi(M−1)) ∈ (GΘ)M−1

α ·


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+
M−1∑
j=1

mσi(j)(Yσi(j))



+
∑

Y1∪...∪YM=X,
Y1∩...∩YM≡∅

(1− α) ·
M∏
j=1

mj(Yj), (45)

where Yj ∈ GΘ is the response of the expert j, mj(Yj) the associated belief function and σi is given by (24). This formula

could seem difficult to understand, but it can be implemented easily as shown in [15].

If we take again the previous example, with δ1(., .) given by equation (32), there is no difference with the DPCR. If δ1(., .)

is calculated by equation (34), the only difference pertains to the mass 0.09 coming from the responses of the three experts:

A ∪B ∪ C ∪D, A ∪B ∪ C ∪D and A ∪ C. This mass is transferred on A ∪ C (0.06) and on A ∪B ∪ C ∪D (0.03).
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The rules presented in the previous section, propose a repartition of the masses giving a partial conflict only (when at most

two experts are in discord) and do not take heed of the level of imprecision of the responses of the experts (the non-specificity

of the responses). The imprecision of the responses of each expert is only considered by the mixed and MDPCR rules when

there is no conflict between the experts. To try to overcome these problems Martin and Osswald have proposed a begin of

solutions toward a more general rule [15].

VI. GENERALIZATION OF QUALITATIVE FUSION RULES

This section provides two simple examples to show in detail how to extend the generalized quantitative fusion rules proposed

in the previous section (i.e. the Mixed, the Discounted, and the Mixed Discounted fusion rules) to their qualitative counterparts

using our operators on linguistic labels defined in section II-C1.

Example 12: Fusion of two sources

Consider a set of labels L = {Lmin = L0, L1, L2, L3, L4, L5, Lmax = L6}, and a frame of discernment Θ = {A,B,C} in

Shafer’s model (i.e. all intersections empty). Consider the two following qualitative sources of evidence:
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A B C A ∪B

qm1(.) L2 L0 L0 L4

qm2(.) L3 L2 L1 L0

Table XVI

QUALITATIVE INPUTS FOR EXAMPLE 12

Now let’s apply the qualitative versions of Mixed, Discounted, and Mixed Discounted Quantitative Fusion rules (28), (36)

and (44) respectively.

• Qualitative Mixed Dubois-Prade’s rule: From the formula (28) and Table VI, one gets:

qmδ
Mix(A) = δ(A,A)qm1(A)qm2(A)

+ (1− δ(A,A))qm1(A)qm2(A)

+ (1− δ(A,A ∪B))qm1(A)qm2(A ∪B)

+ (1− δ(A ∪B,A))qm1(A ∪B)qm2(A)

= 0 · L2L3 + 1 · L2L3 + 1 · L2L0 + 1 · L4L3

= L0 + L 2·3
6

+ L 2·0
6

+ L 4·3
6

= L 6
6

+ L 12
6

= L 18
6

Similarly, qmδ
Mix(B) = L 8

6
and

qmδ
Mix(C) = δ(C,C)qm1(C)qm2(C) + (1− δ(C,C))qm1(C)qm2(C)

= 0 · L0L1 + 1 · L0L1 = L0

qmδ
Mix(A ∪B) = δ(A ∪B,A ∪B)qm1(A ∪B)qm2(A ∪B)

+ δ(A,A ∪B)qm1(A)qm2(A ∪B)

+ δ(A ∪B,A)qm1(A ∪B)qm2(A)

+ δ(B,A ∪B)qm1(B)qm2(A ∪B)

+ δ(A ∪B,B)qm1(A ∪B)qm2(B)

+ δ(A,B)qm1(A)qm2(B) + δ(B,A)qm1(B)qm2(A)

+ (1− δ(A ∪B,A ∪B))qm1(A ∪B)qm2(A ∪B)

= L0 + L0 + L0 + L0 + L0 + 1 · L2L2 + 1 · L0L3

= L 2·2
6

+ L 0·3
6

= L 4
6
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Note: The first five terms of previous sum take value L0 since δ1(., .) = 0 for each of them.

qmδ
Mix(A ∪ C) = δ(A,C)qm1(A)qm2(C) + (1− δ(C,A))qm1(C)qm2(A)

= 1 · L2L1 + 1 · L0L3 = L 2·1
6

+ L 0·3
6

= L 2
6

qmδ
Mix(A ∪B ∪ C) = δ(C,A ∪B)qm1(C)qm2(A ∪B) + δ(A ∪B,C)qm1(A ∪B)qm2(C)

= 1 · L0L0 + 1 · L4L1 = L 4
6

This coincides with normal qualitative Dubois-Prade’s and DSmH fusion rules. qmδ
Mix(.) is quasi-normalized both ways:

• without approximation, since:

L 18
6

+ L 8
6

+ L 0
6

+ L 4
6

+ L 2
6

+ L 4
6

= L 18+8+0+4+2+4
6

= L 36
6

= L6 = Lmax

• and with approximations:

L[ 18
6 ] + L[ 8

6 ] + L[ 0
6 ] + L[ 4

6 ] + L[ 2
6 ] + L[ 4

6 ] = L3 + L1 + L0 + L1 + L0 + L1 = L6 = Lmax

Compute qmMix(.) using the second similarity/dissimilarity weights given by the equation (30) (which are equal in this case

with Jaccard’s distance similarity/dissimilarity weights). In this case, we get better results. Since from Table VIII and formula

(28), one gets:

qmη
Mix(A) = η(A,A)qm1(A)qm2(A) + (1− η(A,A))qm1(A)qm2(A)

+ (1− η(A,A ∪B))qm1(A)qm2(A ∪B) + (1− η(A ∪B,A))qm1(A ∪B)qm2(A)

= 0 · L2L3 + 1 · L2L3 +
1
2
· L2L0 +

1
2
· L4L3 = L0 + L 2·3

6
+ L 2·0

6·2
+ L 4·3

6·2
= L0+ 6

6 +0+ 6
6

= L 12
6

qmη
Mix(B) = (1− η(B,A ∪B))qm1(B)qm2(A ∪B) =

1
2
· L2L4 = L 4·2

6·2
= L 4

6

qmη
Mix(A ∪B) = η(A ∪B,A ∪B)qm1(A ∪B)qm2(A ∪B)

+ η(A,A ∪B)qm1(A)qm2(A ∪B) + η(A ∪B,A)qm1(A ∪B)qm2(A)

+ η(B,A ∪B)qm1(B)qm2(A ∪B) + η(A ∪B,B)qm1(A ∪B)qm2(B)

+ η(A,B)qm1(A)qm2(B) + η(B,A)qm1(B)qm2(A)

+ (1− η(A ∪B,A ∪B))qm1(A ∪B)qm2(A ∪B)

= 0 · L4L0 +
1
2
· L2L0 +

1
2
· L4L3

1
2
· L0L0 +

1
2
· L4L2 + 1 · L2L2 + 1 · L0L3 + 1 · L4L0

= L0 + L0 + L 4·3
6·2

+ L0 + L 4·2
6·2

+ L 2·2
6

+ L0 = L 6+4+4
6

= L 14
6

qmη
Mix(A ∪ C) = η(A,C)qm1(A)qm2(C) + (1− η(C,A))qm1(C)qm2(A)

= 1 · L2L1 + 1 · L0L3 = L 2·1
6

+ L 0·3
6

= L 2
6
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qmη
Mix(A ∪B ∪ C) = η(C,A ∪B)qm1(C)qm2(A ∪B) + η(A ∪B,C)qm1(A ∪B)qm2(C)

= 1 · L0L0 + 1 · L4L1 = L 4
6

Similarly, qmη
Mix(.) is quasi-normalized both ways.

• Discounted Qualitative PCR: (formula (36))

We show how to apply the Discounted Qualitative PCR rule (36) in this example with the fixed discounting factor α = 0.6,

hence 1− α = 0.4. First, apply the qualitative conjunctive rule.

A B C A ∪B

qm1(.) L2 L0 L0 L4

qm2(.) L3 L2 L1 L0

qm∧(.) L 18
6

L 8
6

L0 L0

Table XVII

QUALITATIVE INPUTS AND CONJUNCTIVE RULE

Indeed, one has:

qm∧(A) = L2L3 + L2L0 + L3L4 = L 2·3
6 +0+ 3·4

6
= L 18

6

qm∧(B) = L0L2 + L0L0 + L2L4 = L0+0+ 2·4
6

= L 8
6

qm∧(C) = L0L1 = L0

qm∧(A ∪B) = L4L0 = L0

Applying the proportional conflict redistribution according to PCR, one has:

x1,A

L2
=
y1,B

L2
=

L2L2

L2 + L2
=
L 4

6

L4
= L( 4

6÷4)·6 = L1

so,

x1,A = L2L1 = L 2
6

y1,B = L2L1 = L 2
6

x2,A

L2
=
z1,C

L1
=

L2L1

L2 + L1
=
L 2

6

L3
= L( 2

6÷3)·6 = L 4
6

so,

x2,A = L2L 4
6

= L 4/3
6

z1,C = L1L 4
6

= L 2/3
6

z2,C

L1
=
w1,A∪B

L4
=

L1L4

L1 + L4
=
L 4

6

L5
= L( 4

6÷5)·6 = L 4
5
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so,

z2,C = L1L 4
5

= L 1·4/5
6

= L 0.8
6

w1,A∪B = L4L 4
5

= L 4·4/5
6

= L 3.2
6

Summing, we get:

qmDPCR(A) = L 18
6

+ 0.6 · (L 2
6

+ L 4/3
6

) = L 18
6

+ 0.6 · L 10/3
6

= L 18
6

+ L 2
6

= L 20
6

qmDPCR(B) = L 8
6

+ 0.6 · (L 2
6
) = L 8

6
+ L 1.2

6
= L 9.2

6

qmDPCR(C) = L0 + 0.6 · (L 4/3
6

+ L 0.8
6

) = L0 + L 0.62/3+0.8
6

= L 0.88
6

qmDPCR(A ∪B) = L0 + 0.6 · (L 3.2
6

+ 0.4 · (L2L2 + L3L2) = L 1.92
6

+ 0.4 · L 2·2
6

= L 1.92
6 + 1.60

6
= L 3.52

6

qmDPCR(A ∪ C) = 0.4 · (L2L1 + L3L0) = 0.4 · (L 2·1
6

+ L0) = L 0.8
6

qmDPCR(A ∪B ∪ C) = 0.4 · (L0L0 + L1L4) = 0.4 · (L0 + L 1·4
6

) = L 1.6
6

We can check that qmDPCR(.) is quasi-normalized both ways.

• Mixed Discounted Qualitative PCR (formula (44)):

In this example, we still set the discounting factor to α = 0.6.

1) Using the first kind of similarity/dissimilarity weights (see Table VI), one obtains:

qmδ
MDPCR(A) = δ1(A,A)qm1(A)qm2(A) + δ2(A,A)qm1(A)qm2(A)

+ δ2(A,A ∪B)qm1(A)qm2(A ∪B) + δ2(A ∪B,A)qm1(A ∪B)qm2(A)

+ α · (L 2
6

+ L 4/3
6

)

= 0 · L2L3 + 1 · L2L3 + 1 · L2L0 + 1 · L4L3 + 0.6 · (L 2
6

+ L 4/3
6

)

= L 18
6

+ 0.6 · L 10/3
6

= L 18
6

+ L 2
6

= L 20
6

The term L 4/3
6

in the sum above comes from the previous Discounted Qualitative PCR example.

One gets the same result as in the previous example (Discounted Qualitative PCR).

2) Using the second kind of similarity/dissimilarity weights (see Table VIII), one obtains:

qmη
MDPCR(A) = η(A,A)qm1(A)qm2(A) + (1− η(A,A))qm1(A)qm2(A)

+ (1− η(A,A ∪B))qm1(A)qm2(A ∪B) + (1− η(A ∪B,A))qm1(A ∪B)qm2(A)

+ α · (L 2
6

+ L 4/3
6

)

= 0 · L2L3 + 1 · L2L3 +
1
2
· L2L0 +

1
2
· L4L3 + 0.6 · (L 2

6
+ L 4/3

6
)

= L 12
6

+ L 2
6

= L 14
6
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Similarly:

qmη
MDPCR(B) = 0 · L0L2 + 1 · L0L2 +

1
2
· L0L0 +

1
2
· L4L2 + 0.6 · L 2

6

=
1
2
· L4L2 + L 1.2

6
= L 4·2

6·2
+ L 1.2

6
= L 4

6
+ L 1.2

6
= L 5.2

6

qmη
MDPCR(C) = 0 · L0L1 + 1 · L0L1 + 0.6 · (L 2/3

6
+ L 0.8

6
) = L0 + L0 + L 0.88

6
= L 0.88

6

The term L 0.8
6

in the sum above comes from the previous Discounted Qualitative PCR example.

qmη
MDPCR(A ∪B) = η(A ∪B,A ∪B)qm1(A ∪B)qm2(A ∪B)

+ η(A,A ∪B)qm1(A)qm2(A ∪B) + η(A ∪B,A)qm1(A ∪B)qm2(A)

+ η(B,A ∪B)qm1(B)qm2(A ∪B) + η(A ∪B,B)qm1(A ∪B)qm2(B)

+ (1− η(A ∪B,A ∪B))qm1(A ∪B)qm2(A ∪B)

+ α · L 3.2
6

+ (1− α)qm1(A)qm2(B) + (1− α)qm1(B)qm2(A)

= 0 · L4L0 +
1
2
· L0L1 +

1
2
· L4L3

1
2
· L0L0 +

1
2
· L4L2 + 1 · L4L0

+ 0.6 · L 3.2
6

+ 0.4 · L2L2 + 0.4 · L0L3

= L 4·3
6·2

+ L 4·2
6·2

+ L 1.92
6

+ L 1.60
6

= L 6
6

+ L 4
6

+ L 1.92
6

+ L 1.60
6

= L 13.52
6

qmη
MDPCR(A ∪ C) = (1− α)qm1(A)qm2(C) + (1− α)qm1(C)qm2(A)

= 0.4 · L2L1 + 0.4 · L3L0 = L 0.8
6

qmη
MDPCR(A ∪B ∪ C) = (1− α)qm1(C)qm2(A ∪B) + (1− α)qm1(A ∪B)qm2(C)

= 0.4 · L0L0 + 0.4 · L4L1 = L 1.6
6

qmη
MDPCR(.) is quasi-normalized without approximations, but it is not with approximations.
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Example 13: Fusion of three sources

Consider a set of labels L = {Lmin = L0, L1, L2, L3, L4, L5, Lmax = L6}, and a frame of discernment Θ = {A,B,C} in

Shafer’s model (i.e. all intersections empty). Let’s take the three following qualitative sources of evidence:

A B B ∪ C A ∪B ∪ C

qm1(.) L2 L0 L0 L4

qm2(.) L0 L3 L0 L3

qm3(.) L0 L0 L5 L1

Table XVIII

QUALITATIVE INPUTS FOR EXAMPLE 13

• Qualitative conjunctive rule:

If one applies the Qualitative Conjunctive Rule (QCR), one gets:

qm∧(A) = qm1(A)qm2(A ∪B ∪ C ∪D)qm3(A ∪B ∪ C ∪D) = L2L3L1 = L 2·3
6
L1 = L 2·3·1

6·6
= L 1

6

Similarly,

qm∧(B) = L4L3L1 + L4L3L5 = L 4·3·1
6·6

+ L 4·3·5
6·6

= L 2
6

+ L 10
6

= L 12
6

qm∧(B ∪ C) = L4L3L5 = L 4·3·5
6·6

= L 10
6

qm∧(A ∪B ∪ C ∪D) = L4L3L1 = L 4·3·1
6·6

= L 2
6

The total conflict is:

qm∧(∅) = qm1(A)qm2(B)qm3(B ∪ C) + qm1(A)qm2(B)qm3(A ∪B ∪ C ∪D) + qm1(A)qm2(A ∪B ∪ C ∪D)qm3(B ∪ C)

= L2L3L5 + L2L3L1 + L2L3L5 = L 2·3·5
6·6

+ L 2·3·1
6·6

+ L 2·3·5
6·6

= L 5
6

+ L 1
6

+ L 5
6

= L 11
6

• Qualitative PCR:

Applying the proportional conflict redistribution for the first partial conflict qm1(A)qm2(B)qm3(B ∪ C), one gets:

x1,A

L2
=
y1,B

L3
=
z1,B∪C

L5
=

L2L3L5

L2 + L3 + L5
=
L 5

6

L10
= L( 5

6÷10)·6 = L 3
6

so,

x1,A = L2L 3
6

= L 2·3
6·6

= L 1
6

y1,B = L3L 3
6

= L 3·3
6·6

= L 1.5
6

z1,B∪C = L5L 3
6

= L 5·3
6·6

= L 2.5
6

Applying the proportional conflict redistribution for the second partial conflict qm1(A)qm2(B)qm3(A∪B∪C ∪D), one gets:

x2,A

L2
=
y2,B

L3
=
w1,A∪B∪C∪D

L1
=

L2L3L1

L2 + L3 + L1
=
L 1

6

L6
= L( 1

6÷6)·6 = L 1
6
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so,

x2,A = L2L 1
6

= L 2·1
6·6

= L 1/3
6

y2,B = L3L 1
6

= L 3·1
6·6

= L 1/2
6

= L 0.5
6

w1,A∪B∪C∪D = L1L 1
6

= L 1·1
6·6

= L 1/6
6

Applying the proportional conflict redistribution for the third partial conflict qm1(A)qm2(A ∪ B ∪ C ∪D)qm3(B ∪ C), one

gets:

x3,A

L2
=
w2,A∪B∪C∪D

L3
=
z2,B∪C

L5
=

L2L3L5

L2 + L3 + L5
= L 3

6

so,

x3,A = L2L 3
6

= L 1
6

w2,A∪B∪C∪D = L3L 3
6

= L 1.5
6

z2,B∪C = L5L 3
6

= L 2.5
6

Summing, we get:

qmPCR(A) = L 1
6

+ L 1
6

+ L 1/3
6

+ L 1
6

= L 10/3
6

qmPCR(B) = L 12
6

+ L 1.5
6

+ L 0.5
6

= L 14
6

qmPCR(B ∪ C) = L 10
6

+ L 2.5
6

+ L 2.5
6

= L 15
6

qmPCR(A ∪B ∪ C ∪D) = L 2
6

+ L 1/6
6

+ L 1.5
6

= L 22/6
6

We can check that qmPCR(.) is quasi-normalized without approximations (i.e. when working within the refined set of linguistic

labels by keeping fractional indexes), but it is not quasi-normalized when using approximations of fractional indexes if we

want to work back within the original set of linguistic labels L = {Lmin = L0, L1, L2, L3, L4, L5, Lmax = L6}.

• Discounted Qualitative PCR (formula (37)):

Let’s consider the discounting factor α = 0.6. Consider the previous example and discount it according to (37) applied in the

qualitative domain. One obtains:

qmDPCR(A) = L 1
6

+ 0.6 · (L 1
6

+ L 1/3
6

+ L 1
6
) = L 1

6
+ 0.6 · L 7/3

6
= L 2.4

6

qmDPCR(B) = L 12
6

+ 0.6 · (L 1.5
6

+ L 0.5
6

) = L 1
6

+ 0.6 · L 2
6

= L 13.2
6

qmDPCR(B ∪ C) = L 10
6

+ 0.6 · (L 2.5
6

+ L 2.5
6

) = L 10
6

+ 0.6 · L 5
6

= L 13
6

qmDPCR(A ∪B ∪ C) = (1− α)qm1(A)qm2(B)qm2(B ∪ C) = 0.4 · L2L3L5 = 0.4 · L 5
6

= L 2
6
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qmDPCR(A ∪B ∪ C ∪D) = L 2
6

+ 0.6 · (L 1/6
6

+ L 1.5
6

) + 0.4 · (L2L3L1 + L2L3L5)

= L 2
6

+ 0.6 · L 5/3
6

+ 0.4 · (L 1
6

+ L 5
6
)

= L 2
6

+ L 1
6

+ 0.4 · L 6
6

= L 3
6

+ L 2.4
6

= L 5.4
6

qmDPCR(.) is quasi-normalized without approximations, but it is not with approximations.

VII. CONCLUSIONS

With the recent development of qualitative methods for reasoning under uncertainty developed in Artificial Intelligence,

more and more experts and scholars have expressed great interest on qualitative information fusion, especially those working

in the development of modern multi-source systems for defense, robot navigation, mapping, localization and path planning and

so on. In this paper, we propose some solutions to handle the conflict and to weight the imprecision of the responses of the

experts, from the classical combination rules for qualitative and quantitative beliefs. Hence, we have presented a mixed rule

given by a weighted sum of the conjunctive and disjunctive rules. The weights are defined from a measure of non-specifity

calculated by the cardinality of the responses of the experts. This rule transfers the partial conflict on partial ignorance. Again,

the proportional conflict distribution rule redistributes the partial conflict on the element implied in this conflict. We propose

an extension of this rule by a discounting procedure, thereby, a part of the partial conflict is also redistributed on the partial

ignorance. We have introduced a measure of conflict between pair of experts and another measure of non-conflict between

pair of experts, as to quantify this part. In order to take heed of the non-specifity and to redistributed the partial conflict, we

propose a fused rule of these two new rules. This rule is created in such way that we retain a kind of continuity of the mass

on the partial ignorance, between both cases with and without partial conflict. Illustrating examples have been presented in

detail to explain how the new rules work for quantitative and qualitative beliefs. The study of these new rules shows that the

classical combination rules in the belief functions theory cannot take precisely into account the non-specifity of the experts

and the partial conflict of the experts. This is specially important for qualitative belief.
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9-12 July 2007.

[24] Ph. Smets, “Constructing the pignistic probability function in a context of uncertainty”, Uncertainty in Artificial Intelligence, vol. 5, pp. 29-39, 1990.

[25] Ph. Smets, “The Combination of Evidence in the Transferable Belief Model”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,

no. 5, pp. 447-458, 1990.

[26] Ph. Smets, “Belief functions: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem”, International Journal of Approximate

Reasoning, vol. 9, pp. 1-35, 1993.

[27] Ph. Smets and R. Kennes, “The Transferable Belief Model”, Artificial Intelligent, vol. 66, pp. 191-234, 1994.

[28] Ph. Smets, “The α-junctions: the commutative and associative non interactive combination operators applicable to belief functions”, Qualitative and

quantitative practical reasoning, Springer Verlag, D. Gabbay and R. Kruse and A. Nonnengart and H.J. Ohlbacg, Berlin, pp. 131-153, 1997.

[29] K. Sentz, S. Ferson, “Combination of evidence in Dempster-Shafer Theory”, SANDIA Tech. Report, SAND2002-0835, 96 pages, April 2002.

[30] L. Xu, A. Krzyzak and C.Y. Suen, “Methods of Combining Multiple Classifiers and Their Application to Handwriting Recognition”,IEEE Transactions

on Systems, Man Cybernetics, vol. 22, no. 3, pp. 418-435, May 1992.

[31] R.R. Yager, “Hedging in the combination of evidence”, Journal of Information and Optimization Science, Vol. 4, No. 1, pp. 73-81, 1983.

[32] R.R. Yager, “On the relationships of methods of aggregation of evidence in expert systems”, Cybernetics and Systems, Vol. 16, pp. 1-21, 1985.

[33] R.R. Yager, “On the Dempster-Shafer Framework and New Combination Rules”, Informations Sciences, vol. 41, pp. 93-137, 1987.

[34] L. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems, vol. 1, no. 3, pp. 3-28, 1978.

[35] L. Zadeh, “On the validity of Dempster’s rule of combination”, Memo M 79/24, Univ. of California, Berkeley, 1979.


