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Abstract

Martin and Osswald [15] have recently proposed many generalizations of combination rules on quantitative beliefs in order
to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express themselves usually
in natural language with linguistic labels, Smarandache and Dezert [13] have introduced a mathematical framework for dealing
directly also with qualitative beliefs. In this paper we recall some element of our previous works and propose the new combination

rules, developed for the fusion of both qualitative or quantitative beliefs.
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General combination rules for
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I. INTRODUCTION

Many fusion theories have been studied for the combination of the experts opinions expressed either quantitatively or
qualitatively such as voting rules [11], [30], possibility theory [6], [34], and belief functions theory [2], [17]. All these
fusion approaches can be divided basically into four steps: modelization, parameters estimation (depending on the model, not
always necessary)), combination and decision. The most difficult step is presumably the first one which depends highly on
the problem and application we have to cope with. However, it is only at the combination step that we can take into account
useful information such as the conflict (partial or total) between the experts and/or the specificity of the expert’s response.

The voting rules are not adapted to the modelization of conflict between experts [30]. Although both possibility and
probability-based theories can model imprecise and uncertain data at the same time, in many applications, the experts are
only able to express their “certainty” (or belief) only from their partial knowledge, experience and from their own perception
of the reality. In such context, the belief function-based theories provide an appealing general mathematical framework for
dealing with quantitative and qualitative beliefs.

In this paper we present the most recent advances in belief functions theory for managing the conflict between the sources of
evidence/experts and their specificity. For the first time in the literature both the quantitative and qualitative aspects of beliefs
are presented in a unified mathematical framework. This paper actually extends two papers [13], [15] presented during the
10th International Conference on Information Fusion (Fusion 2007) in Québec City, Canada on July 9-12, 2007 in the session

“Combination in Evidence Theory”.

Section II briefly recalls the basis of belief functions theories, i.e. the Mathematical Theory of Evidence or Dempster-Shafer
theory (DST) developed by Shafer in 1976 [2], [17], and its natural extension called Dezert-Smarandache Theory (DSmT) [18],
[19]. We introduce in this section the notion of quantitative and qualitative beliefs and the operators on linguistic labels for
dealing directly with qualitative beliefs. Section III presents the main classical quantitative combination rules used so far, i.e.
Dempster’s rule, Yager’s rule, Dubois-Prade’s rule and the recent Proportional Conflict Redistribution rules (PCR) proposed
by Smarandache and Dezert [21] and extended by Martin and Osswald in [19]. Some examples are given to illustrate how
these rules work. Section IV explains through different examples how all the classical quantitative combination rules can be
directly and simply translated/extended into the qualitative domain in order to combine easily any qualitative beliefs expressed
in natural language by linguistic labels. Section V proposes new general quantitative rules of combination which allow to take
into account both the discounting of the sources (if any) and the proportional conflict redistribution. The direct extension of
these general rules into the qualitative domain is then presented in details on several examples in section VI.
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II. BASIS OF DST AND DSMT
A. Power set and hyper-power set

In DST framework, one considers a frame of discernment © = {6,...,6,} as a finite set of n exclusive and exhaustive
elements (i.e. Shafer’s model denoted M?(0)). The power set of © is the set of all subsets of ©. The order of a power
set of a set of order/cardinality |©| = n is 2". The power set of © is denoted 2°. For example, if © = {6,605}, then
29 = {0,6,,05,0, UBb}.

In DSmT framework, one considers © = {6,...,6,} be a finite set of n exhaustive elements only (i.e. free DSm-model
denoted M7 (©)). Eventually some integrity constraints can be introduced in this free model depending on the nature of the
problem of interest. The hyper-power set of © (i.e. the free Dedekind’s lattice) denoted D® [18] is defined as:

1) 0,64,...,0, € D°.

2) If A,Be D®, then ANB, AUB € D°®.

3) No other elements belong to D®, except those obtained by using rules 1 or 2.

If |©] = n, then |D®| < 22", Since for any finite set ©, |D®| > 29|, we call D® the hyper-power set of ©. For example,
if © = {61,0-}, then D® = {(),0, N O2,01,02,0, UBy}. The free DSm model M7 (©) corresponding to D® allows to work
with vague concepts which exhibit a continuous and relative intrinsic nature. Such concepts cannot be precisely refined in an
absolute interpretation because of the unreachable universal truth.

It is clear that Shafer’s model M (©) which assumes that all elements of © are truly exclusive is a more constrained model
than the free-DSm model M7 (©) and the power set 2© can be obtained from hyper-power set D® by introducing in M/ (©)
all exclusivity constraints between elements of ©. Between the free-DSm model M/ (0) and Shafer’s model M°(0), there
exists a wide class of fusion problems represented in term of the DSm hybrid models denoted M (©) where © involves both
fuzzy continuous and discrete hypotheses. The main differences between DST and DSmT frameworks are (i) the model on
which one works with, and (ii) the choice of the combination rule and conditioning rules [18], [19]. In the sequel, we use the
generic notation G© for denoting either D® (when working in DSmT with free DSm model) or 2° (when working in DST

with Shafer’s model).

B. Quantitative basic belief assignment (bba)

The (quantitative) basic belief assignment (bba) m(.) has been introduced for the first time in 1976 by Shafer [17] in his
Mathematical Theory of Evidence (i.e. DST). m(.) is defined as a mapping function from 2© — [0, 1] provided by a given
source of evidence B satisfying the conditions:

m(0) =0, )

> m(A)=1. 2)

Ae2®

The elements of 2° having a strictly positive mass are called focal elements of B. The set of focal elements of m/(.) is

called the core of m(.) and is usually denoted F(m). The equation (1) corresponds to the closed-world assumption [17]. As



introduced by Smets [24], we can also define the belief function only with:

> m(A) =1. 3)

Ae2°®

and thus we can have m(()) > 0, working with the open-world assumption. In order to change an open world to a closed
world, we can always add one extra closure element in the open discriminant space ©. In the following, we assume that we
always work within a closed-world ©.

The (quantitative) basic belief assignment (bba) m(.) can also be defined similarly in the DSmT framework by working on
hyper-power set D® instead on classical power-set 2© as within DST. More generally for taking into account some integrity

constraints on (closed-world) © (if any), m(.) can be defined on G® as:

m(0) =0, 4)

> om(A)=1. ©)

AeG®

The conditions (1)-(5) give a large panel of definitions of the belief functions, which is one of the difficulties of the theories.
From any basic belief assignments m(.), other belief functions can be defined such as the credibility Bel(.) and the plausibility

PI(.) [17], [18] which are in one-to-one correspondence with m(.).

After combining several bba’s provided by several sources of evidence into a single one with some chosen fusion rule
(see next section), one usually has also to make a final decision to select the “best” hypothesis representing the unknown
truth for the problem under consideration. Several approaches are generally adopted for decision-making from belief functions
m(.), Bel(.) or PI(.). The maximum of the credibility function Bel(.) is known to provide a pessimistic decision, while the
maximum of the plausibility function PI(.) is often considered as too optimistic. A common solution for decision-making in
these frameworks is to use the pignistic probability denoted BetP(X) [24] which offers a good compromise between the max
of Bel(.) and the max of PI(.). The pignistic probability in DST framework is given for all X € 29, with X # () by:

Xny| m(y
BetP(X)= Y ||y| |1T(m()®)7 6)
Y €20,y £0

for m(()) # 1. The pignistic probability can also be defined in DSmT framework as well (see Chapter 7 of [18] for details).

When we can quantify/estimate the reliability of each source of evidence, we can weaken the basic belief assignment before
the combination by the classical discounting procedure [17]:
m'(X) = am(X), VX € 29\ {0}
m'(©) =am(©)+1 - a.

(7

a € [0, 1] is the discounting factor of the source of evidence B that is in this case the reliability of the source of evidence B,

eventually as a function of X € 2. Same procedure can be applied for bba’s defined on G® in DSmT framework.



C. Qualitative basic belief assignment (qgbba)

1) Qualitative operators on linguistic labels: Recently Smarandache and Dezert [13], [19] have proposed an extension
of classical quantitative belief assignments and numerical operators to qualitative beliefs expressed by linguistic labels and
qualitative operators in order to be closer to what human experts can easily provide. In order to compute directly with
words/linguistic labels and qualitative belief assignments instead of quantitative belief assignments over G®, Smarandache
and Dezert have defined in [19] a qualitative basic belief assignment gm(.) as a mapping function from G®© into a set of
linguistic labels L = {Lo,i,LnH} where [ = {Ly,---,Ly} is a finite set of linguistic labels and where n > 2 is an
integer. For example, L, can take the linguistic value “poor”, Lo the linguistic value “good”, etc. L is endowed with a total
order relationship <, so that ; < Ly < --- < L,. To work on a true closed linguistic set L under linguistic addition and
multiplication operators, Smarandache and Dezert extended naturally L with two extreme values Lo = Ly and L1 = Liax,
where L corresponds to the minimal qualitative value and L,,4; corresponds to the maximal qualitative value, in such a way
that Lo < L; < Ly < --- < L, < L,+;, where < means inferior to, less (in quality) than, or smaller than, etc. Labels Lo, L1,
Lo, ..., Ly, L,41 are called linguistically equidistant if: L;yy — L; = L; — L;_q for all i = 1,2,...,n where the definition
of subtraction of labels is given in the sequel by (14). In the sequel L; € L are assumed linguistically equidistant’ labels such
that we can make an isomorphism between L = {Lo, L1, La,...,Lyp, Lpt1} and {0,1/(n+1),2/(n+1),...,n/(n+1),1},
defined as L; = i/(n+ 1) for all ¢ = 0,1,2,...,n,n + 1. Using this isomorphism, and making an analogy to the classical
operations of real numbers, we are able to justify and define precisely the following qualitative operators (or g-operators for
short):

¢ @-addition of linguistic labels:

i J 147

L;+L; = = = L1, 8
L n+1+n+1 n—+1 + ®)

we set the restriction that 4 + j < n + 1; in the case when i + j > n + 1 we restrict L;1; = Ly41 = Lyax. This is the
justification of the qualitative addition we have defined.

o g-multiplication of linguistic labels®:

a) Since L;-L; = ﬁ . nil = %ﬁﬂ), the best approximation would be Lj;.;y/(n+1)), Where [x] means the closest

integer to x (with [n +0.5] =n+ 1, Vn € N), i.e

Li- Lj = Liij)/(nt1))- ®)

For example, if we have Lo, L1, Lo, L3, L4, Ls, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1, then Ly - L3 =
Li2.3)/5) = Lis/5) = L1.2) = L1; using numbers: 0.4 - 0.6 = 0.24 ~ 0.2 = L1; also L3 - Ly = L3.3)/5) = Ljg/5) =
L1.8) = L2; using numbers 0.6 - 0.6 = 0.36 ~ 0.4 = Lo.

b) A simpler approximation of the multiplication, but less accurate (as proposed in [19]) is thus:
L;- Lj = Lin{ij}- (10)

o Scalar multiplication of a linguistic label:

2If the labels are not equidistant, the g-operators still work, but they are less accurate.
3The g-multiplication of two linguistic labels defined here can be extended directly to the multiplication of 7 > 2 linguistic labels. For example the product

of three linguistic label will be defined as L; - L; - Ly = Li(;.5.k)/ (n+1)(n+1)]> €tC-



Let a be a real number. We define the multiplication of a linguistic label by a scalar as follows:

L Ligs if[a-i] >0,
o Li=20 & (11)

1
nt L_[q.q otherwise.

« Division of linguistic labels:

a) Division as an internal operator: /: L - L — L. Let j # 0, then
Lisjy-mrry  H(@/5) - (n+1)] <n+1,

L;/L; = (12)
Lyt otherwise.

The first equality in (12) is well justified because when [(i/7) - (n + 1)] < n + 1, one has:

oo Y+l (i/5)-(n+1)

/L;j e T [(i/)-(n+1)]

For example, if we have Lg, Ly, Lo, L3, Ly, L5, corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1, then:
Li/L3 = Li1/3y.5 = Lisss) = Lpes) = Lo. La/Lo = Lya/2).5) = L2.5) = Lmax = Ls since 10 > 5.
b) Division as an external operator: @ : L- L — R*. Let j # 0. Since L, @ L; = (i/(n+1))/(j/(n + 1)) = i/j, we
simply define:
LioL;=1/j. (13)

Justification of b): When we divide say L,/ L, in the above example, we get 0.8/0.2 = 4, but no label is corresponding
to number 4 which is not included in the interval [0, 1], hence the division as an internal operator we need to get
as a response label, so in our example we approximate it to Ly ,x = L5, which is a very rough approximation!
Therefore, depending on the fusion combination rules, it may be better to consider the qualitative division as an

external operator, which gives us the exact result.

o ¢-subtraction of linguistic labels: — : L - L — {L,—L},

Li—; if i>7,
L —L; = (14)
—Lj,i if <y

where —L = {—Ly,—Ls,...,—Ly,,—L,41}. The g-subtraction above is well justified since when ¢ > j, one has
=4 _J_ _ iZj
LZ LJ  n+l n+l = n+l°

The previous qualitative operators are logical due to the isomorphism between the set of linguistic equidistant labels and a
set of equidistant numbers in the interval [0, 1]. These qualitative operators are built exactly on the track of their corresponding
numerical operators, so they are more mathematically defined than the ad-hoc definitions of qualitative operators proposed in
the literature so far. The extension of these operators for handling quantitative or qualitative enriched linguistic labels can be

found in [13].

Remark about doing multi-operations on labels:



When working with labels, no matter how many operations we have, the best (most accurate) result is obtained if we do
only one approximation. That one should be at the end. For example, if we have to compute terms like L;L;Ly/(L, + Lg)
as for QPCRS (see example in section IV), we compute all operations as defined above. Without any approximations (i.e. not

even calculating the integer part of indexes, neither replacing by n + 1 if the intermediate results is bigger than n + 1), so:

L,L;Ly _ Lijk)/(nt1)2
Lp + Lq Lp+q

:L1 n 2 :sz n+1 :L ijk 15
gt = Destteon =D "

and now, when all work is done, we compute the integer part of the index, i.e. [( or replace it by n+1 if the final result

ijk ]
n+1)(p+q)
is bigger than n+ 1. Therefore, the term L, L; Ly /(L,+ L,) will take the linguistic value L, whenever [Mw] >n+1.
This method also insures us of a unique result, and it is mathematically closer to the result that would be obtained if working
with corresponding numerical masses. Otherwise, if one approximates either at the beginning or end of each operation or in
the middle of calculations, the inaccuracy propagates (becomes bigger) and we obtain different results, depending on the places
where the approximations were done. If we need to round the labels’ indexes to integer indexes, for a better accuracy of the
result, this rounding must be done at the very end. If we work with fractional/decimal indexes (therefore no approximations),

then we can normally apply the qualitative operators one by one in the order they are needed; in this way the quasi-normalization

is always kept.

2) Quasi-normalization of gm(.): There is no known way to define a normalized gm/(.), but a qualitative quasi-normalization
[19], [23] is nevertheless possible when considering equidistant linguistic labels because in such case, ¢gm(X;) = L;, is
equivalent to a quantitative mass m(X;) = i/(n + 1) which is normalized if:

dom(X) =) in/(n+1)=1,

XeGe k

but this one is equivalent to:

Z qm(X) = Zsz = L7L+1~
k

XeGe

In this case, we have a qualitative normalization, similar to the (classical) numerical normalization. However, if the previous
labels Lo, L1, Lo, ..., Ly, Ly4+1 from the set L are not equidistant, the interval [0, 1] cannot be split into equal parts according
to the distribution of the labels. Then it makes sense to consider a qualitative quasi-normalization, i.e. an approximation of
the (classical) numerical normalization for the qualitative masses in the same way:

Z gm(X) = Lp41.

XeGe

In general, if we don’t know if the labels are equidistant or not, we say that a qualitative mass is quasi-normalized when the above

summation holds. In the sequel, for simplicity, one assumes to work with quasi-normalized qualitative basic belief assignments.

From these very simple qualitative operators, it is possible to extend directly all the quantitative combination rules to their

qualitative counterparts as we will show in the sequel.



3) Working with refined labels:

o We can further extend the standard labels (those with positive integer indexes) to refined labels, i.e. labels with frac-

tional/decimal indexes. In such a way, we get a more exact result, and the quasi-normalization is kept.

Consider a simple example: If Lo = good and L3 = best, then Lo 5 = better, which is a qualitative (a refined label) in
between Lo and Ls.
o Further, we consider the confidence degree in a label, and give more interpretations/approximations to the qualitative

information.

For example: Ly/5 = (1/5) - Lo, which means that we are 20% confident in label Ly; or Ly/5 = (2/5) - L1, which means

that we are 40% confident in label Ly, so L; is closer to reality than Lo; we get 100% confidence in Lo /5 =1 Lyys.

4) Working with non-equidistant labels: We are not able to find (for non-equidistant labels) exact corresponding numerical
values in the interval [0, 1] in order to reduce the qualitative fusion to a quantitative fusion, but only approximations. We,

herfore, prefer the use of labels.

ITI. CLASSICAL QUANTITATIVE COMBINATION RULES

The normalized conjunctive combination rule also called Dempster-Shafer (DS) rule is the first rule proposed in the belief
theory by Shafer following Dempster’s works in sixties [2]. In the belief functions theory one of the major problems is the
conflict repartition enlightened by the famous Zadeh’s example [35]. Since Zadeh’s paper, many combination rules have been
proposed, building a solution to this problem [4], [5], [7]-[9], [14], [20], [25], [26], [33]. In recent years, some unification rules
have been proposed [1], [12], [28]. We briefly browse the major rules developed and used in the fusion community working
with belief functions through last past thirty years (see [29] and [19] for a more comprehensive survey).

To simplify the notations, we consider only two independent sources of evidence B; and By over the same frame © with
their corresponding bba’s mq(.) and mo(.). Most of the fusion operators proposed in the literature use either the conjunctive
operator, the disjunctive operator or a particular combination of them. These operators are respectively defined YA € G®©, by:

my(A4) = (my Vmg)(A) = Z m1(X)ma(Y), (16)
X,YeG®
XUY=A

ma(A4) = (my Amg)(A) = Z m1(X)ma(Y). (17)

X,YeGg®
XNY=A

The global/total degree of conflict between the sources B; and B is defined by :

EEma@) = > mi(X)ma(Y). (18)

X,YeGg®
XNy =0

If k is close to O, the bba’s my(.) and mgy(.) are almost not in conflict, while if % is close to 1, the bba’s are almost in

total conflict. Next, we briefly review the main common quantitative fusion rules encountered in the literature and used in



engineering applications.

Example I: Let’s consider the 2D frame © = {A, B} and two experts providing the following quantitative belief assignments

(masses) mq(.) and ma(.):

A | B | AuB
mi() | 1/6 | 3/6 | 2/6
ma() | 4/6 | 1/6 | 1/6

Table T

QUANTITATIVE INPUTS FOR EXAMPLE 1

The disjunctive operator yields the following result:

m(A) = mi(A)ms(A) = (1/6) - (4/6) = 4/36

my(B) = mi(B)ma(B) = (3/6) - (1/6) = 3/36

my (AU B) = my1(A)ma(B) + m1(B)ma(A)
+my (A)ma(A U B) +ma(A)my (AU B)
+my (B)ma(AU B) + my(B)mi (AU B)
+m1 (AU B)ma(AU B)
-(1/6) + (3/6) - (4/6)
- (1/6) + (4/6) - (2/6)
- (1/6) + (1/6) - (2/6)
- (1/6)

while the conjunctive operator yields:
ma(A) =my(A)mg(A) + mi(A)ma(AU B) + ma(A)mi (AU B)

= (1/6) - (4/6) + (1/6) - (1/6) + (4/6) - (2/6) = 13/36

ma(B) = myi(B)ma(B) + mi(B)mz2(AU B) + mg(B)mi (AU B)

= (3/6) - (1/6) +(3/6) - (1/6) + (1/6) - (2/6) = 8/36

mp(AUB) =mi (AU B)ma(AUB) = (2/6) - (1/6) = 2/36



ma(ANB) 2 ma(AN B) = my(A)ma(B) + ma(B)my(B)

= (1/6) - (1/6) + (4/6) - (3/6) = 13/36

e Dempster’s rule [3]:

This combination rule has been initially proposed by Dempster and then used by Shafer in DST framework. We assume
(without loss of generality) that the sources of evidence are equally reliable. Otherwise a discounting preprocessing is first
applied. It is defined on G® = 2© by forcing mps(#) = 0 and VA € G® \ {0} by:

1 ma(A)

mDs(A) = mm/\(A) = w

19)

When £ = 1, this rule cannot be used. Dempster’s rule of combination can be directly extended for the combination of
N independent and equally reliable sources of evidence and its major interest comes essentially from its commutativity and
associativity properties. Dempster’s rule corresponds to the normalized conjunctive rule by reassigning the mass of total conflict
onto all focal elements through the conjunctive operator. The problem enlightened by the famous Zadeh’s example [35] is
the repartition of the global conflict. Indeed, consider © = {A, B,C} and two experts opinions given by m(A4) = 0.9,
m1(C) = 0.1, and mo(B) = 0.9, ma(C) = 0.1, the mass given by Dempster’s combination is mpg(C) = 1 which looks
very counter-intuitive since it reflects the minority opinion. The generalized Zadeh’s example proposed by Smarandache and
Dezert in [18], shows that the results obtained by Dempster’s rule can moreover become totally independent of the numerical
values taken by mq(.) and ms(.) which is much more surprising and difficult to accept without reserve for practical fusion
applications. To resolve this problem, Smets [25] suggested in his Transferable Belief Model (TBM) framework [27] to consider
© as an open-world and therefore to use the conjunctive rule instead Dempster’s rule at the credal level. At credal level m ()
is interpreted as a non-expected solution. The problem is actually just postponed by Smets at the decision/pignistic level since
the normalization (division by 1 — mn(0)) is also required in order to compute the pignistic probabilities of elements of ©.
In other words, the non normalized version of Dempster’s rule corresponds to the Smets’ fusion rule in the TBM framework

working under an open-world assumption, i.e. mg(()) = k = m () and VA € GO \ {0}, ms(A) = mn(A).

Example 2: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.
AN B = (), then the conflicting quantitative mass k¥ = ma(A N B) = 13/36 is redistributed to the sets A, B, AU B
proportionally with their mx(.) masses, i.e. ma(A) = 13/36, ma(B) = 8/36 and ma(A U B) = 2/36 respectively through
Demspter’s rule (19). One thus gets:

mps(0) =0

mps(A) = (13/36)/(1 — (13/36)) = 13/23

mps(B) = (8/36)/(1 — (13/36)) = 8/23

mps(AUB) = (2/36)/(1 — (13/36)) = 2/23

If one prefers to adopt Smets’ TBM approach, at the credal level the empty set is now allowed to have positive mass. In this



case, one gets:
mreym (@) =ma(ANB) =13/36
mrpym(A) = 13/36
mrpm(B) = 8/36
mrsn(AUB) = 2/36

e Yager’s rule [31]-[33]:

Yager admits that in case of high conflict Dempster’s rule provides counter-intuitive results. Thus, k plays the role of an
absolute discounting term added to the weight of ignorance. The commutative and quasi-associative* Yager’s rule is given by
my (0) =0 and VA € G®\ {0} by

my (A) = ma(A) 0)

my () = ma(0©) + ma(0)
Example 3: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.

AN B =), then the conflicting quantitative mass k = ma (AN B) = 13/36 is transferred to total ignorance AU B. One thus

gets:

my (A) = 13/36

my (B) = 8/36

my (AU B) = (2/36) 4+ (13/36) = 15/36

e Dubois & Prade’s rule [5]:
This rule supposes that the two sources are reliable when they are not in conflict and at least one of them is right when a
conflict occurs. Then if one believes that a value is in a set X while the other believes that this value is in a set Y, the truth
liesin X NY aslong XNY # (). If X NY = (), then the truth lies in X UY". According to this principle, the commutative and

quasi-associative Dubois & Prade hybrid rule of combination, which is a reasonable trade-off between precision and reliability,

is defined by mpp(0) = 0 and VA € G® \ {0} by

mpp(A) =ma(A) + Y mi(X)ma(Y) (21)

In Dubois & Prade’s rule, the conflicting information is considered more precisely than in Dempster’s or Yager’s rules since

all partial conflicts involved the total conflict are taken into account separately through (21).

The repartition of the conflict is very important because of the non-idempotency of the rules (except the Denceux’ rule [4] that
can be applied when the dependency between experts is high) and due to the responses of the experts that can be conflicting.
Hence, we have defined the auto-conflict [16] in order to quantify the intrinsic conflict of a mass and the distribution of the

conflict according to the number of experts.

4quasi—associativity was defined by Yager in [33], and Smarandache and Dezert in [21].



Example 4: Taking back example 1 and assuming Shafer’s model for O, the quantitative Dubois & Prade’s rule gives the same
result as quantitative Yager’s rule since the conflicting mass, ma(A N B) = 13/36, is transferred to A U B, while the other

quantitative masses remain unchanged.

e Proportional Conflict Redistribution rules (PCR):

PCRS5 for combining two sources

Smarandache and Dezert proposed five proportional conflict redistribution (PCR) methods [20], [21] to redistribute the partial
conflict on the elements implied in the partial conflict. The most efficient for combining two basic belief assignments m(.)

and my(.) is the PCRS5 rule given by mpcrs(f) = 0 and for all X € G©, X # () by:

_ mi(X)?ma(Y) | ma(X)?ma(Y)
mpcrs(X) = ma(X) + Yg@ <m1(X)+m2(Y) * m2(X)+m1(Y)> 7 22
XNY=0

where m (.) is the conjunctive rule given by the equation (17).

Example 5: Let’s consider the 2D frame and quantitative masses as given in example 1 and assume Shafer’s model (i.e.
AN B = 0), then the conflicting quantitative mass k = ma(A N B) = 13/36 is redistributed only to elements involved in

conflict, A and B (not to A U B). We repeat that:
mA(AN B) = my (A)ma(B) + ma(B)my(B) = (1/6) - (1/6) + (4/6) - (3/6) = 13/36.

So (1/6) - (1/6) = 1/36 is redistributed to A and B proportionally to their quantitative masses assigned by the sources (or
experts) my(A) =1/6 and mo(B) = 1/6:

T1,A _ Y1,B 1/36 _
16 16 (1/6) + /e /1%
hence
x1,4 = (1/6) - (1/12) = 1/72,
and

yi,g = (1/6) - (1/12) = 1/72.

Similarly (4/6)-(3/6) = 12/36 is redistributed to A and B proportionally to their quantitative masses assigned by the sources
(or experts) mo(A) =4/6 and m4(B) = 3/6:

Ta A Y2.B 12/36 B
16 ~ 36 o +am T

hence

xo.4 = (4/6) - (2/7) = 4/21,
and

y2.8 = (3/6) - (2/7) = 1/7.



It is easy to check that

T1,A+Y1,B + 02,4+ Y28 =13/36 =mA(ANDB)
Summing, we get:

mpcrs(A) = (13/36) + (1/72) + (4/21) = 285/504 ~ 0.57
mpcrs(B) = (8/36) + (1/72) + (1/7) = 191/504 ~ 0.38
mPCR5(A U B) = 2/36 ~ (.05

mpcrs(ANB =10) =0

PCR6 for combining more than two sources

A generalization of PCR5 fusion rule for combining altogether more than two experts has been proposed by Smarandache
and Dezert in [21]. Recently Martin and Osswald [14], [16] studied and formulated a new version of the PCR5 rule, denoted
PCR6, for combining more than two sources, say M sources with M > 2. Martin and Osswald have shown that PCR6
exhibits a better behavior than PCR5 in specific interesting cases. PCR6 rule is defined as follows: mpcre() = 0 and for

all X € G®, X +# 0,

M—-1
u T 7o) (Vo)
=1
mpcre(X) =ma(X) + Y mi(X)? > — :
=1 M—1 (23)
0 Yo nx=0 mi(X)+ Y Mo, () (Yo (i)
i =

(Yoi(1)7~--7Yai(]V171))E(G@)N171

where Y; € G® is the response of the expert j, m;(Y;) the associated belief function and o; counts from 1 to M avoiding i:

oi(j) =17 if 7 <1,
i(7) =17 j 24
oi(j)=j+1 ifj>i.
The idea is here to redistribute the masses of the focal elements giving a partial conflict proportionally to the initial masses

on these elements.

In general, for M > 3 sources, one calculates the total conflict, which is a sum of products; if each product is formed by
factors of masses of distinct hypothesis, then PCR6 coincides with PCRS; if at least a product is formed by at least two
factors of masses of same hypotheses, then PCRG is different from PCR5:

o for example: a product like m;(A)ma(A)ms(B), herein we have two masses of hypothesis A;

e or my(AU B)ma(BUC)ms(BUC)my(BUC), herein we have three masses of hypothesis B U C' from four sources.

Example 6: For instance, consider three experts expressing their opinion on © = {4, B, C, D} in the Shafer’s model:

The global conflict is given here by 0.21+0.14+0.09=0.44, coming from:

- A, B and AU C for the partial conflict 0.21,
- A Band AUBUCUD for 0.14,



A | B | AuC | AUBUCUD
mi(.) | 07 | 0 0 0.3
ma(.) | 0 |05 0 0.5
m3(.) | 0 0 0.6 0.4

Table II

QUANTITATIVE INPUTS FOR EXAMPLE 6

-and B, AUC and AU BUC U D for 0.09.

With the generalized PCR6 rule (23), we obtain:

7 7
mpcre(A) = 0.14 +0.21 +0.21 - g TO014- 75~ 0.493
5 5 5
mpcre(B) = 0.06 + 0.21 - g T 014- 75 +009 2 ~0.194
6 6
mpcre(AUC) = 0.09 4 0.21 - g T0.09- 77 =0.199
4 3
mpcre(AUBUCUD) =0.06+0.14 - T 0.09 7 = 0.114

Example 7: Let’s consider three sources providing quantitative belief masses only on unions.

AUB | BUC | AUC | AUBUC

mi(.) | 07 0 0 0.3

ma(.) 0 0 0.6 0.4

mas(.) 0 0.5 0 0.5
Table III

QUANTITATIVE INPUTS FOR EXAMPLE 7

The conflict is given here by:
ma(0) =mi(AUB)ma(AUC)mzg(BUC)=0.7-0.6-0.5=0.21
With the generalized PCR rule, i.e. PCR6, we obtain:
mpcre(4) = 0.21,
mpcre(B) = 0.14,
mpcre(C) = 0.09,
mpcre(AU B) =0.14 + 0.21.1—78 ~ 0.2217,
mpcre(B U C) = 0.06 + 0.21.% ~ (0.1183,
mpcre(AUC) =0.09 + 0.21.128 = 0.16,

mPCR6(A UuBU O) = 0.06.

In the sequel, we use the notation PCR for two and more sources.



IV. CLASSICAL QUALITATIVE COMBINATION RULES

The classical qualitative combination rules are direct extensions of classical quantitative rules presented in previous section.
Since the formulas of qualitative fusion rules are the same as for quantitative rules, they will be not reported in this section.
The main difference between quantitative and qualitative approaches lies in the addition, multiplication and division operators
one has to use. For quantitative fusion rules, one uses addition, multiplication and division operators on numbers while for

qualitative fusion rules one uses the addition, multiplication and division operators on linguistic labels defined as in section II-C1.

Example 8: Below is a very simple example used to show how classical qualitative fusion rules work. Let’s consider the
following set of linguistic labels L = {Lyin = Lo, L1, Lo, L3, L4, L5, Limax = Lg} and let’s assume Shafer’s model for
the frame © = {A, B} we want to work on. In this example, we consider only two experts providing the qualitative belief

assignments (masses) gmq(.) and gmaz(.) such that:

A B AUB
gmi(.) | L1 | L3 Lo
gma(.) | Ly | L1 L1

Table IV

QUALITATIVE INPUTS FOR EXAMPLE 8

The qualitative belief assignments ¢gmq(.) and gms(.) have been chosen quasi-normalized since Ly + L3 + Lo = Lg = Lax

and respectively Ly + L1 + L1 = Lg = Lpax.

e Qualitative Conjunctive rule (QCR): This rule provides gmn (.) according following derivations:
qma(A) = gmi(A)gmz(A) + gmi(A)gmz(AU B) + qma(A)gmi(AU B)
=1Ly + L1L1 + LyLy = L% + L%l +L% = Lat14s = L%
6
gma(B) = gmi(B)gmz(B) + gmi(B)gmz(AU B) + gma(B)gmi (AU B)
= L3l + L3y + LiLs = LSTl + LsTl —‘y—Lsz = Lsis12 = L%
6

qma(AU B) = qmi(AUB)qma(AUB) = LyLy = Lz2a = L

ol

o

qma(AN B) = qgmi(A)qgma(B) + qma(B)qm1(B) = L1Ly + LyLs = L1a + Las = Lz = L

11
6 6

o

We see that not approximating the indexes (i.e. working with refined labels), the quasi-normalization of the qualitative
conjunctive rule is kept:
=1L

L%+L%+L%+LL = Lg = Lmax.

[~
olg

o

But if we approximate each refined label, we get:
L[%] + L[%] + L[%] + L[%] =Lo+ L1+ Lo+ Lo = Ls # Le¢ = Liax-

Let’s examine the transfer of the conflicting qualitative mass gma(ANB) = gqma(0) = L 13 to the non-empty sets according

to the main following combination rules:



e Qualitative Dempster’s rule (extension of classical numerical DS rule to qualitative masses): Assuming Shafer’s model for

the frame © (i.e. AN B = ) and according to DS rule, the conflicting qualitative mass gma(AN B) = L 13 is redistributed

to the sets A, B, AU B proportionally with their gm (.) masses Lis, Ls, and L2 respectively:

Lis Lis
TA YB _ ZAUB 13 13
Ly Ls L Lis+Ls+Lz Lz (2+%)6 (L3)6 .

Therefore, one gets:

13 138 138 38 6
So:
quS(A) :L% JFL}% :L%+% :L%
quS(B):L% +L% ZL%_F% ZL%
quS(AUB)zL%—&—L% ZL%_,’_% :L%

gmps(AN B =0) = Ly

gmps(.) is quasi-normalized since:

Laes + L2ss + L2 = Ls»
138 138 138

12

= Lg = Lax.

oo

W)
0]

If we approximate the linguistic labels L%, L% and L% in order to work with original labels in L, still gmpg(.) remains

quasi-normalized since:

quS(A) ~ L[468] = Lg
quS(B) ~ L[%] = Lg
gmps(AUB) = Lizzy =L

and L3 + LQ + Ll = L6 = Lmax-

e Qualitative Yager’s rule:



With Yager’s rule, the qualitative conflicting mass L 1 is entirely transferred to the total ignorance A U B, so:

gmy(AUB) =1L

15
6

o

and

while the others remain the same:

gmy (.) is quasi-normalized since:

and L2 + L1 + L3 = LG = Lmax~

e Qualitative Dubois & Prade’s rule: In this example the Qualitative Dubois & Prade’s rule gives the same result as qualitative
Yager’s rule since the conflicting mass, gma (AN B) = L%, is transferred to AU B, while the other qualitative masses remain

unchanged.

o Qualitative Smets’ TBM rule: Smets’ TBM approach allows keeping mass on the empty set. One gets:

Of course gmrpa(.) is also quasi-normalized.

However if we approximate, ¢gmypys(.) does not remain quasi-normalized in this case since:

quBM(A) ~ L[%] = L2
gmrpyM(B) = Lis) = Ly
quBM(AUB) ~ L[%] = LO

quBM(@) ~ L[%] =L



aHdL2+L1+L0—|—L2:Ls#LGZLmaX.

e Qualitative PCR (QPCR): The conflicting qualitative mass, gma(ANB) = L%, is redistributed only to elements involved

in conflict, A and B (not to A U B). We repeat that

gmpcr(A N B) = gmq(A)gma(B) + gma(B)gm, (B)

[

6

=110+ L4yLs = L% + Las =Liti2 = L2
G

o

So L% is redistributed to A and B proportionally to their qualitative masses assigned by the sources (or experts) gmq(A) = Ly

and qu(B) 1: 1 L1
X ’4 yl,B LG - 6 — Z 1 — L
= (,+3).6

Nl

hence

ty,a=1Li-Li =1Ly 1y.6=1L

Nl=
|~

1

[

and

yl,B:Ll'L L

1 1
2 12
Similarly L 12 is redistributed to A and B proportionally to their qualitative masses assigned by the sources (or experts)

qmz(A) = Ly and gm;(B) = Lg:

x2,A = y2,B = L% = L% p— L 12 == L12
Ly Lj Ly+ Lz Lr (F=7)6 v
hence
T2,A = L4 Lli72 = L(4 1—72)—6 = Lg
and

Summing, we get:

quCR(A) = L% +LT12 +L% :L%ﬁ
gmpcr(B) = Ls + Lo +Ls = Lin
quCR(AUB) = L% = LszTg

gmpcr(ANB =0) = Lo

gmpcr(.) is quasi-normalized since:

= Lsos = Lg = Linax.

L2ss + Lionn + L
84 84
However, if we approximate, it is not quasi-normalized any longer since:
L[%] + L[%] + L[g] = L3+ La+ Lo = Ls # Lg = Liax-

In general, if we do not approximate, and we work with quasi-normalized qualitative masses, no matter what fusion rule

we apply, the result will be quasi-normalized. If we approximate, many times the quasi-normalization is lost.



V. GENERALIZATION OF QUANTITATIVE FUSION RULES

In [1], [28] we can find two propositions of a general formulation of the combination rules. In the first one, Smets considers
the combination rules from a matrix notation and find the shape of this matrix according to some assumptions on the rule, such
as linearity, commutativity, associativity, etc. In the second one, a generic operator is defined from the plausibility functions.

A general formulation of the global conflict repartition have been proposed in [8], [12] for all X € 2° by:
me(X) = ma(X) +w(X)ma (D), (25)

where Z w(X) = 1. The problem is the choice of the weights w(X).
Xe29

A. How to choose conjunctive and disjunctive rules?

We have seen that conjunctive rule reduces the imprecision and uncertainty but can be used only if one of the experts is
reliable, whereas the disjunctive rule can be used when the experts are not reliable, but allows a loss of specificity.
Hence, Florea [7] proposes a weighted sum of these two rules according to the global conflict & = m ((}) given for X € 2°

by:
mFlO(X) = ﬂl(k)m\/(X) + ﬂg(k)m/\ (X), (26)

1
where 31 and (32 can admit k = 5 as symmetric weight:

k
Bilk) = s,
L k4 k2 27)
) = e

Consequently, if the global conflict is high (k near 1) the behavior of this rule will give more importance to the disjunctive
rule. Thus, this rule considers the global conflict coming from the non-reliability of the experts.
In order to take into account the weights more precisely in each partial combination, we propose the following new rule.

For two basic belief assignments m; and ms and for all X € G®, X # () we have:

mix(X) = Z 01(Y1, Y2)mq (Y1)ma(Y2) + Z 02(Y1, Y2)mq (Y1)ma(Y2). (28)
Y1UYo=X YiNYo=X

Of course, if §1(Y1,Y2) = B1(k) and d2(Y1,Y2) = B2(k) we obtain Florea’s rule. In the same manner, if §;(Y7,Y2) =
1 —69(Y1,Y5) = 0 we obtain the conjunctive rule and if 01(Y7,Y2) =1 — d2(Y7,Y2) = 1 the disjunctive rule. If §;(Y1,Y2) =

1—92(Y1,Y3) = 1y, Ay,—¢ we retrieve Dubois and Prade’s rule and the partial conflict can be considered, whereas the rule (26).

The choice of §;(Y1,Y2) =1 — 02(Y7,Y>2) can be done by a dissimilarity such as:

C(Yl n Yz)

0(Y1,¥2) =01, ¥2) = L = e e}

(29)

or

C(Y:1 N Ya)

01V, Y2) =00, Y2) 21— ey

(30)



where C(Y7) is the cardinality of Y;. In the case of the DST framework, C(Y7) is the number of distinct elements of Y7. In the
case of the DSmT, C(Y}) is the DSm cardinality given by the number of parts of Y] in the Venn diagram of the problem [18].
d(.,.) in (29) is actually not a proper dissimilarity measure (e.g. d(Y1,Y2) = 0 does not imply Y7 = Y3), but 7(.,.) defined
in (30) is a proper dissimilarity measure. We can also take for d2(Y7,Y2), the Jaccard’s distance, i.e. §2(Y7,Y2) = d(Y7,Y2)
given by:

C(Y: N Yz)

AT AV A

€1y

used by [10] on the belief functions. Note that d is not a distance in the case of DSmT. Thus, if we have a partial conflict
between Y7 and Ys, C(Y1 NY3) = 0 and the rule transfers the mass on Y; U Ys. In the case Y1 C Y, (or the contrary),
Y1NY; =Y, and Y1 UY, = Y5, so with 01(.,.) = d(.,.) the rule transfers the mass on Y7 and with §;(.,.) =1 —d(.,.) it
transfers the mass on Y; and Y3 according to the ratio (C(Y7)/C(Y2)) of the cardinalities. In the case Y1 NY; # Y7, Y5 and 0,

the rule transfers the mass on Y3 NY; and Y7 UY; according to 4(.,.) and d(.,.).

Example 9: (on the derivation of the weights)

Let’s consider a frame of discernment © = {4, B, C'} in Shafer’s model (i.e. all intersections empty).

a) We compute the first similarity weights d5(.,.) =1 — d(.,.): since

62(,.)=1-6(,.)| A|B|C| AuUB
A 1 0 0 1
B 0 1 0 1
C 0 0 1 0
AUB 1 1 0 1
Table V
VALUES FOR 1 — 4(., .)
C(AN A) C(A)
02(A,A) = = =1
A= St cay e
ANB
52(A, B) = ¢( )y

~ min{C(A4),C(B)}
because AN B = and C(P) = 0.

_ CAN(AUB)  C(4)
92(A, AUB) = min{C(A),C(AUB)} ~ C(A) -

etc.

Whence, the first dissimilarity weights d1(.,.) defined by (29), i.e. §1(X,Y) =1 — §5(X,Y) take the values:

The first similarity and dissimilarity weights d2(., .) and 01 (., .) are not quite accurate, since for example: d2(A, AUB) = 1,
i.e. A and AU B are 100% similar (which is not the case since A # AU B) and 6;(A,AUB) =1—§3(4,AUB) =
1-1=0, ie. Aand AU B are 100% dissimilar (which is not the case either since AN (AU B) # ().



VALUES FOR §(.,.)

51(,)=68(,) | A| B AUB
A 01 0
B 1o 0
C 1 1 1
AUB 0o 0
Table VI
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b) The second similarity weights d2(.,.) = 1 —17(.,.) given by the equation (30) overcomes this problem. We obtain on the

previous example: since

82(,)=1-n(,) | A | B |C | AUB
N 1 ool 12
B ol 1ol 12
0] o0 |1 0
AUB 1] o 1
Table VII
VALUES FOR 1 — 7(.,.)
L . C(AnA) c4)
02(A, A) =1—-n(A A) = max{C(A),C(A)} ~C(A) '
B _ C(ANnB) _
224, B) =1 =n(A.B) = o ey ey
because AN B = and C(()) = 0.
L ___C(An(AUB)) c(4)
52(A,AUB) =1-n(A,AUB) = max{C(A),C(AUB)} _ C(AUB)

which is better than d5(A4, AU B) =1—§(A, A

etc.

UB) =1.

Whence, the second dissimilarity weights 7)(.,.) take the values:

01(,)=mn(,.) | A B | C| AUB
A 0 1 172
B 1 0 172
C 1 1 1
AUB 12 | 12 0
Table VIII

VALUES FOR 7(., .)

n(A,AUB) =1— 1 = 1, which is better than 61 (A, AU B) = 6(A, AU B) = 0.

1

2

The second similarity weight coincides with Jaccard’s distance in Shafer’s model, but in hybrid and free models, they

are generally different. Hence if we consider a Shafer’s model, one gets for all Y3, Y3 in G©:

d(Y17}/2) = ]- - n(Ylu}/Q)
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Smarandache defined in [22] the degree of intersection of two sets as Jaccard’s distance, and also the degree of union of
two sets, and the degree of inclusion of a set into another set and improved many fusion rules by inserting these degrees

in the fusion rules’ formulas.

Example 10: (with Shafer’s model)

Consider the following example for two (quantitative) experts providing mq(.) and mz(.) on © = {A, B, C} and let’s assume

that Shafer’s model holds (i.e. A, B and C' are truly exclusive):

ml() mQ() mna MMix,é MMix,n
MMix,d
0 0 0 0.2 0 0

A 0.3 0 0.3 0.24 0.115
B 0 0.2 0.14 0.14 0.06
AUB 0.4 0 0.12 0.18 0.18
C 0 0.2 0.06 0.06 0.02
AUC 0 0.3 0.09 0.15 0.165
AuBUC 0.3 0.3 0.09 0.23 0.46

Table IX

QUANTITATIVE INPUTS AND FUSION RESULT

When taking 01(.,.) = d(.,.) according to (29), one obtains:

01(.,.)=90(,.) | A| AuUB | AUBUC
B 1 0 0
C 1 1 0
AUC 0 12 0
AUBUC 0 0 0
Table X

VALUES FOR 4., .)

where the columns are the focal elements of the basic belief assignment given by the expert 1 and the rows are the focal
elements of the basic belief assignment given by expert 2. The mass 0.2 on () come from the responses A and C' with a value
of 0.06, from the responses A and B with a value of 0.06 and from the responses A U B and C with a value of 0.08. These
three values are transferred respectively on AUC, AU B and AU B U C. The mass 0.12 on A given by the responses AU B

and A U C is transferred on A with a value of 0.06 and on A U B U C with the same value.

When taking 61 (.,.) =n(.,.) or 01(.,.) =1 —d(.,.) according to (30) and (31), one obtains:

With 6;(.,.) =nor §1(.,.) =1 —d(.,.), the rule is more disjunctive: more masses are transferred on the ignorance.

Note that d1(.,.) = d(.,.) can be used when the experts are considered reliable. In this case, we consider the most precise



5104 = ()
61(,.)=1-4d(.,,.) | A | AUB | AUBUC
B 1 172 2/3
C 1 1 2/3
AUC 172 2/3 173
AUuBUC 2/3 1/3 0
Table XI

VALUES FOR (.,.) OR 1 —d(.,.)
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response. With d1(.,.) = n(.,.) or §1(.,.) = 1 —d(.,.), we get the conjunctive rule only when the experts provide the same

response, otherwise we consider the doubtful responses and we transfer the masses in proportion of the imprecision of the

responses (given by the cardinality of the responses) on the part in agreement and on the partial ignorance.

Example 11: (with a hybrid model)

Consider the same example with two (quantitative) experts providing mi(.) and ms(.) on the frame of discernment © =

{4, B,C} with the following integrity constraints: AN B # 0, ANC = () and BN C = § (which defines a so-called

DSm-hybrid model [18]):

QUANTITATIVE INPUTS AND FUSION RESULT

When taking d1(.,.) = 4(.,.) according to (29), one obtains:

61(,)=6(,)| A | AuUB | AUBUC
B 172 0 0
C 1 1 0
AUC 0 1/3 0
AUuBUC 0 0 0
Table XIIT

VALUES FOR 6(.,.)

When taking 01(.,.) = 7(.,.) according to (30), one obtains:

mi1(.) | m2(.) | ma | mumix,s | MMix,y | MMix,d
0 0 0 0.14 0 0 0
ANB 0 0 0.06 0.03 0.03 0.02
A 0.3 0 0.3 0.26 0.205 0.185
B 0 0.2 0.14 0.14 0.084 0.084
AUB 0.4 0 0.12 0.15 0.146 0.156
C 0 0.2 0.06 0.06 0.015 0.015
AUC 0 0.3 0.09 0.15 0.1575 0.1575
AUuBUC 0.3 0.3 0.09 0.21 0.3625 0.3825
Table XII
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51(,)=n(,) | A | AUB | AUBUC
B 12 1/3 12
c 1 1 3/4
AUC 13| 13 1/4
AUBUC | 12| 14 0
Table XIV

VALUES FOR 7(., .)

é61(,.)=1-4d(,.) | A | AUB | AUBUC
B 2/3 1/3 172
C 1 1 3/4
AuC 1/3 172 1/4
AUuBUC 172 1/4 0
Table XV

VALUES FOR 1 — d(.,.)

When taking 01(.,.) =1 — d(.,.) according to (31), one obtains:
For more than two experts, say M > 2, if the intersection of the responses of the M experts is not empty, we can still

transfer on the intersection and the union, and the equations (29) and (30) become:

C(Yin..NYy)

0(Y1,..0uYyr) =01, .., YY) =1— 32
1(Y1, ., Yar) = 6(Ya, oo, Yor) min C(Y;) (32)
1<i<M
and
C(Yin..NYy)
0h(Yi,..wYy)=nY1,...Yy)=1— ———F+—"+ 33
1( 1 5 M) 77( 15 3 ]W) max C(Y;) ( )
1<i<M
From equation (31), we can define 4; by:
C(Yl n...N Y]w)
(Y1, .uYy)=1— F————. 34
Finally, the mixed rule for M > 2 experts is given by:
M M
mMix(X) = Z (Sl(Yl,,YM)HmJ(Y;)—F Z (1—61<Y1,,YA1))HTTLJ(§/J) (35)
YiU..UYy =X j=1 Yin..nNYy=X Jj=1

This formulation can be interesting according to the coherence of the responses of the experts. However, it does not allow

the repartition of the partial conflict in an other way than the Dubois and Prade’s rule.

B. A discounting proportional conflict repartition rule

The PCRE6 redistributes the masses of the conflicting focal elements proportionally to the initial masses on these elements.
First, the repartition concerns only on the elements involved in the partial conflict. We can apply a discounting procedure in
the combination rule in order to transfer a part of the partial conflict on the partial ignorance. This new discounting PCR

(noted DPCR) can be expressed for two basic belief assignments m;(.) and mo(.) and for all X € G©, X # () by:
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mpper(X) =ma(X)+ Y
YeGg®
XNYy=0

+ Y (=) mi(Y1)ma(Ya), (36)

YiUYe=X
YiNYo=0

) ( mq (X)2m2 (Y) mao (X)2m1(Y) )
ma (X) + mg(Y) mz(X>+m1 (Y)

where o € [0, 1] is the discounting factor. Note that we can also apply a discounting procedure on the masses before the
combination as shown in (7). Here the discounting factor is introduced in order to transfer a part of the partial conflict on

partial ignorance. We propose in (39) and (40) different ways for choosing this factor a.

Hence, DPCR fusion rule is a combination of PCR and Dubois-Prade (or DSmH?) rules. In an analogue way we can
combine other fusion rules, two or more in the same formula, getting new mixed formulas. So that in a general case, for

M > 2 experts, we can extend the previous rule as:

M-1
" I 7o) (Youii)
=1
mppcr(X) = ma(X) + Z:mi(X)2 Z Q- J —
i=1 M—-1
N YonX =0 mi(X) + Y Mo, () You ()
- =
(You(1)s - Yoy i—1)) € (GOYM!
M
+ Y a-a)- [, (37)
YiU...UY =X =1

YiN..NYy =0

where Y; € G® is a response of the expert 7, m;(Y;) its assigned mass and o; is given by (24).

Hence, if we choose as discounting factor & = 0.9 in the previous example, we obtain:

7 7

5 5 5
mppcr(B) = 0.06 + 0.21 - = 0.9+0.14 - 6 0.9+ 0.09 - 7 0.9~0.181
6 6
mppcr(AUC) =0.09 4+ 0.21 - ITh 0.9+40.09 - 7 0.9 ~0.187

mppcr(AUBUC) =0.21-0.1 =0.021

3

7 0.940.14-0.140.09-0.1 ~0.132

4
mppcr(AUBUCUD) =0.06+0.14 - It 0.9 +0.09 -

However, in this example, the partial conflict due to the experts 1, 2 and 3 saying A, B, and AU C respectively, the conflict

is 0.21. Nonetheless, only the experts 1 and 2 and the experts 2 and 3 are in conflict. The experts 1 and 3 are not in conflict.

Now, consider another case where the experts 1, 2 and 3 say A, B, and C respectively with the same conflict 0.21. In both
cases, the DPCR rule transfers the masses with the same weight «. Although, we could prefer transfer more mass on © in

5The DSmH rule is an extension of Dubois-Prade’s rule which has been proposed in the DSmT framework in order to work with hybrid models including

non-existential constraints. See [18] for details and examples.



25

the second than in the first case.

Consequently, the transfer of mass can depend on the existence of conflict between each pair of experts. We define the
conflict function giving the number of experts in conflict two by two for each response Y; € G© of the expert i as the number

1
of responses of the other experts in conflict with 7. A function f; is defined by the mapping of (G®)™ onto [O, M} with:

M
> Iyavi=oy
j=1

(Y1, .., Yay) = S 38
fitra M) M= 1) (38)
Hence, we can choose o depending on the response of the experts such as:
M
a(Yi, . Yar) =1=" fi(Yi, ..., o). (39)
i=1

In this case « € [0, 1], we do not transfer the mass on elements that can be written as the union of the responses of the experts.

Therefore, if we consider again our previous example we obtain:

2 1
ABAUC)=1—-==
a( b b ) 3 37
1 2
a(A,B,AUBUCUD):1—§:§,
1 2
Thus the provided mass by the DPCR is:
(A) =0.14+0.21 +0.21 l 1—|—014 l g~O418
TMDPORAA) = T ' T I TR S
5 1 5 2 5 2
B)=0. 21— = A4 — - = 09. —.=-~0.1
mDpCR( ) 006+0 18 3+O 16 3+009 14 3 O 30
6 1 6 2
2
mDpCR(A UuBU C) =0.21- g =0.140
(AUBUCUD) =0.06+0.14 i g—1-009 i g4—014 }—|—009 lw0173
"MbPCR - T e VI S SR St

We want to take account of the degree of conflict (or non-conflict) within each pair of expert differently for each element.
We can consider the non-conflict function given for each expert ¢ by the number of experts not in conflict with . Hence, we

1
can choose ;(Y7, ..., Yys) defined by the mapping of (G®)M onto {0, M] with:

M
Y Iyavize
1 j=1,j#1
Oéi(}ﬁ, ...7Y]\/[) = M — fi(Yb ,YM) = ! ]];(M — 1) . (40)

The discounting PCR rule (equation (37)) can be written for M experts, for all X € G®, X # () as:



M
mppcr(X) = ma(X) + Zmi(X)Q

i=1

2.

My nXx =0
p=1 7 (F) o

(Yoi(l), ey Ya'i(M—l)) S (GG)M7

M M
+ Y =Y a) [[m(v),
YiU...UY =X i=1 j=1

YiNn..NYyu=0
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I 70.6) (Yo

j=1
;A T

mi(X)+ Y Mo,y (Yo, ()

Jj=1

(41)

where ;(X,Y,, (1), s Yo,(ar—1)) is noted «; for notations convenience and A depending on (X, Y, (1),..., Yo, (ar—1)), i8

chosen to obtain the normalization given by the equation (2). A is given when «; # 0, Vi € {1,..., M } by:

M
PRLY
i=1

<o,y >

where < o, > is the scalar product of & = (;)ieq1,...,m} and ¥ = (7i)ie(1,..

Vi = ( ) )

M—-1
mi(X)+ Y Mo,y (Yo, ()
J=1

where v;(X,Y,, (1), --s Yo,(a1—1)) is noted ~; for notations convenience.

(42)

My with:

(43)

With this last version of the rule, for a; given by the equation (40), we obtain on our illustrative example A = % when the

experts 1, 2 and 3 say A, B, and AU C respectively (the conflict is 0.21), A = 15—6 when the conflict is 0.14 and \ = % when

the conflict is 0.09. Thus, the masses are given by:

7T 1 36

A)=0.14 .21 21— = — .

mppcr(A4) =0.14 4+ 0.21+0 56 13+
5 1 16 5 1
mDPCR(B)—0.06+0.14-1—6-6~€+0,09.ﬂ.6
6 1 36 6 1
A =0. 21. — .. = 09. — .=
mppcr(AUC) = 0.09 + 0 56 137099 116

2
mDPCR(A UBU C) =0.21- 3 =0.14

4 1 16 3 1
T)”LDPCR(AUBUC’U.D)—0064—0141—6534_009ﬁg

7 1 16

— = 2~ 042

16 6 5 0420

56

. — ~0.101

17

56

- — ~0.143

17

56 1 1

— 14 - = 09 - ~0.1
17+0 3+009 3 0.196

This last rule of combination allows one to consider a “kind of degree” of conflict (a degree of pair of non-conflict), but

this degree is not so easy to introduce in the combination rule.

C. A mixed discounting conflict repartition rule

In this section, we propose a combination of the mixed rule (35) with the discounting PCR (37). This new mixed discounting

conflict repartition rule (MDPCR for short) for two quantitative basic belief assignments mi(.) and ms(.) is defined by

muppcr(?) = 0 and for all X € G®, X # () by:
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muppcr(X) = Z 01 (Y1,Y2) - my(Y1)ma(Y2)

YiUYs=X,
YiNY2#0

+ Y (1=6 (1, Y2)) - ma (Yi)ma(Y2)

YiNYe=X,
YiNYs it@

(X)Pma(Y) | ma(X)ma(Y)
’ YezG:G) ( X) +ma(Y) * ma(X) + ml(Y)>
XNy =0

+ ) (L—a) - my(Yi)ma(Ya). (44)

YiUY>=X,
YleQE@

« can be given by the equation (39) and d1(.,.) by the equation (32) or (34). The weights must be taken in order to get a
kind of continuity between the mixed and DPCR rules. In actuality, when the intersection of the responses is almost empty
(but not empty) we use the mixed rule, and when this intersection is empty we chose the DPCR rule. In the first case, all the
mass is transferred on the union, and in the second case it will be the same according to the partial conflict. Indeed, oo = 0
if the intersection is not empty and §; = 1 if the intersection is empty. We can also introduce «; given by the equation (40),

and this continuity is conserved.

This rule is given in a general case for M experts, by mymppcr () = 0 and for all X € G©, X # () by:

M
mypper(X) = Y 0(Ve,. Y - [ (Y9)
YiU..UY =X, 7j=1
Ylﬂ...ﬂYA1$@

M
+ > a=aM,. . Ya) - [[mi(v)

Yin..nNYy=X,
YiN...0Ya Z0

M—-1
M H m”i(j)(yﬂi(j))
+ > mi(X)? > o |—5
1=1

M-—1
0 Yo mnX =10 mi(X)+ ) e, () (Yo, ()
i B =
(You(1)s - You(ai—1y) € (GOYM!
M
+ > (=) [[mi), 45)
YiU..UYn=X, j=1

YiN..NYy=0
where Y; € G® is the response of the expert j, m;(Y;) the associated belief function and o; is given by (24). This formula

could seem difficult to understand, but it can be implemented easily as shown in [15].

If we take again the previous example, with d1(.,.) given by equation (32), there is no difference with the DPCR. If §; (., .)
is calculated by equation (34), the only difference pertains to the mass 0.09 coming from the responses of the three experts:

AUBUCUD, AUBUCUD and AU C'. This mass is transferred on A U C' (0.06) and on AU BU C U D (0.03).
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The rules presented in the previous section, propose a repartition of the masses giving a partial conflict only (when at most
two experts are in discord) and do not take heed of the level of imprecision of the responses of the experts (the non-specificity
of the responses). The imprecision of the responses of each expert is only considered by the mixed and MDPCR rules when
there is no conflict between the experts. To try to overcome these problems Martin and Osswald have proposed a begin of

solutions toward a more general rule [15].

VI. GENERALIZATION OF QUALITATIVE FUSION RULES

This section provides two simple examples to show in detail how to extend the generalized quantitative fusion rules proposed
in the previous section (i.e. the Mixed, the Discounted, and the Mixed Discounted fusion rules) to their qualitative counterparts

using our operators on linguistic labels defined in section II-C1.

Example 12: Fusion of two sources

Consider a set of labels L = {Lyin = Lo, L1, Lo, L3, La, L5, Linax = Lg}, and a frame of discernment © = {A, B,C'} in

Shafer’s model (i.e. all intersections empty). Consider the two following qualitative sources of evidence:
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A B C AUB
gmi(.) | L2 | Lo | Lo Ly
gma(.) | L3 | L2 | L Lo

Table XVI

QUALITATIVE INPUTS FOR EXAMPLE 12

Now let’s apply the qualitative versions of Mixed, Discounted, and Mixed Discounted Quantitative Fusion rules (28), (36)

and (44) respectively.

e Qualitative Mixed Dubois-Prade’s rule: From the formula (28) and Table VI, one gets:

gmigix(A) = 6(A, A)gmi (A)gma(A)
+ (1= 6(A, A))gmi (A)gma(A)
+ (1= 8(A, AU B))gmi(A)gms(A U B)
+(1-6(AUB,A))gmi(AU B)gma(A)
—0-LoLs+1-LoLy+1-LoLo+1-LyLs

=Lo+L2s +Lz20+Las =L+ L1
6 6 6 6 6

Similarly, gmy; (B) = Ls and

g (C) = 8(C, C)gm1(C)gma(C) + (1 = 8(C, C))gm1 (C)gma(C)

=0-LoL1+1-LoLy =Ly

qmi (AU B) = §(AU B, AU B)gm; (AU B)gma(A U B)

+ (A, AU B)gmy(A)gma (AU B)

+ (AU B, A)gm1(AU B)gmaz(A)

+ (B, AU B)gmy(B)gm2(AU B)

+ d(AU B, B)gmi(AU B)gma(B)

+ 0(A, B)gma(A)gma(B) + 6(B, A)gm1(B)gmz(A)
+(1-0(AUB,AUB))gm1(AU B)gma(AU B)

=Lo+Lo+Lo+Lo+Lo+1-Laolao+1-LoL3

=L22 4+ Los = Lu
6 6 6
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Note: The first five terms of previous sum take value Lg since d;(.,.) = 0 for each of them.
gMRix (AU C) = 8(A, C)gmy(A)gma(C) + (1 = 5(C, A))gmi (C)gma(A)
=1-LyLy+1-LoLs=L21 4 Los =L:
gl (AUBUC) = 6(C, AU B)qgmy(C)gma(AU B) + §(AU B, C)gm1 (AU B)gms(C)
=1-LoLo+1-LsLy=Ls
This coincides with normal qualitative Dubois-Prade’s and DSmH fusion rules. gm3y; (.) is quasi-normalized both ways:

« without approximation, since:
Lis+Ls+ Lo+ La+ L2+ La = Liststorators = Lae = Lg = Lpax
6 6 6 6 6 6 6 6
o and with approximations:
L[%] + L[%] + L[%] + L[%] + L[%] + L[%] - LS + Ll + LO + Ll + LO + Ll = LG = Lmax

Compute gmyix(.) using the second similarity/dissimilarity weights given by the equation (30) (which are equal in this case
with Jaccard’s distance similarity/dissimilarity weights). In this case, we get better results. Since from Table VIII and formula

(28), one gets:
amypi (A) = (A, A)gmi(A)gma(A) + (1 —n(A, A))gmi(A)gma(A)
+ (1 =n(A, AU B))gmi(A)gmz(AU B) + (1 = n(AU B, A))qm1(A U B)gmz(A)

1 1
:0'L2L3+1'L2L3+§-L2L0+§-L4L3:Lo—f—L%—‘rL% +Lé% :L0+g+0+%:L1

12
6

2 =1L

4-2
6-2

1
gmy;, (B) = (1 = n(B, AU B))gm1(B)gma(AU B) = 3 LoLy =1L

[N

amyp (AU B) =n(AU B, AU B)gmi(AU B)gma(AU B)
+n(A, AU B)gmi(A)gm2(AU B) +n(AU B, A)gmi (AU B)gma(A)
+n(B, AU B)gm1(B)qma(AU B) + n(AU B, B)qgm1 (AU B)qma(B)
+ (A, B)gm1(A)gma(B) +n(B, A)gmi (B)gma(A)
+(1-n(AUB,AUB))gmi1(AUB)gma(AU B)
:O~L4L0+1-L2L0+}-L4L31~L0L0+1~L4L2+1-L2L2+1-L0L3+1-L4Lo

2 2 2 2
:L0+L0+L% +LO+L% +L%+L0:Ls+é+4 =1L

14
6

My (AU C) = n(A, C)gmi(A)gma(C) + (1 — n(C, A))gm1(C)gma(A)

03 =1L
6

=1-LyLy+1 LoLy=Laa + L

ol
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gy (AU BUC) = n(C, AU B)gmi(C)gma(AU B) +n(AU B, C)gmi (AU B)gm»(C)

=1-LoLo+1-LsLy = Ls
Similarly, gmy;; (.) is quasi-normalized both ways.

o Discounted Qualitative PCR: (formula (36))
We show how to apply the Discounted Qualitative PCR rule (36) in this example with the fixed discounting factor @ = 0.6,

hence 1 — o = 0.4. First, apply the qualitative conjunctive rule.

A B C | AUB
gmi(.) Lo Lo | Lo Ly
qm2(-) L3 Lo L1 Lo

L] b |

Lg
6

Lm0 [ 2
Table XVII

QUALITATIVE INPUTS AND CONJUNCTIVE RULE

Indeed, one has:

0o

qm/\(A) = L2L3 +L2L0 + L3L4 = L%+O+% =L

o

qm/\(B) = LolLo+ LoLg+ LoLy = LO+O+% =L

oloo

gma(C) = LoLy = Lo

qm/\(AU B) = L4L0 = Lo

Applying the proportional conflict redistribution according to PCR, one has:

T4 _ Y1B _ LoLs La

— = 8 =L pe=1L
Lo Ly Lo+ Ly ILa (546 = &1
SO,
T1,A = L2L1 = Lé
Y1.8 = Loly = L2
To,A 21,0 LyLy L
2 = 2 = = — = L . = L
Ly L1 ILy+L, Ls G675
SO,

T2,.A = LQL% = LL/?,
6

z1,c = L1La = Ly

6 6

zc  wiavs  LiLy  Li I I
= =5 =La.
L1 L4 Ll +L4 L5

ol
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Summing, we get:

gmppcr(A) = Lis +0.6- (L2 + Lays) = Lus
gmppcr(B) = Ls +0.6- (Lz2) = Ls + L1z =
gmppcr(C) = Lo+ 0.6 (Lus + Los) = Lo+ Loszssos = Logs
gmppcr(AUB) = Lo+ 0.6 - (L% +0.4- (LoLo + L3Ly) = L% +04- L% = L%+1.60 = Lss2
gmoper(AUC) = 04 - (LaLy + LyLo) = 0.4 (Lo + Lo) = Los
gmppcr(AUBUC) = 0.4+ (LoLo + LiLg) = 04+ (Lo + L1a) = L1

We can check that gmppcr(.) is quasi-normalized both ways.
e Mixed Discounted Qualitative PCR (formula (44)):

In this example, we still set the discounting factor to o = 0.6.

1) Using the first kind of similarity/dissimilarity weights (see Table VI), one obtains:

gmippor(4) = 61(A, A)gma (A)gma(A) + 62(A, A)gmi (A)gma(A)
+ 02(A, AU B)gm1(A)gma(A U B) + 62(AU B, A)gm1 (A U B)gma(A)
+o- (L2 + L%g)
=0-LyLy+1-LoLy+1- LaLo+1- LyLy +0.6- (L + Las)

=Lis +06-Liys =Lis+ L2 =Lz
6 — 6 5 6

The term La/s in the sum above comes from the previous Discounted Qualitative PCR, example.
6
One gets the same result as in the previous example (Discounted Qualitative PCR).

2) Using the second kind of similarity/dissimilarity weights (see Table VIII), one obtains:

gmippcer(A) = n(A, A)gmi(A)gma(A) + (1 —n(A, A))gmi(A)gma(A)
+(1—=n(A, AUB))gmi(A)gm2(AUB) + (1 —n(AU B, A))gm1(AU B)gmay(A)
+a- (L% + L4/T3)

1 1
=0-LyLy+1-LoLs + 5 - LoLo + 5 - LaLs + 0.6 (Lz + Las)
6

=L+ Lz =11
6 6

14
6

32
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Similarly:

1 1

§~L0L0+§-L4L2+0.6-L%

= L2+ L1
6-2

.2
6

qmynper(B) =0- LoLy +1- LoLy +

1
:i‘L4L2+L% =1L

+ Li2 = Ls.2
6

5.
6

ol

qm;\]/IDPCR(C) =0-Loly+1-Loly+0.6- (L% + L%) =Lo+ Lo+ L% = L%
The term L 05 in the sum above comes from the previous Discounted Qualitative PCR example.

gmypper(AU B) = n(AU B, AU B)gmi (AU B)gms(A U B)
T (A, AU B)gmi (A)qma(AU B) + (AU B, A)gmi (AU B)gms(A)
+n(B, AU B)gmi(B)gma(AU B) +n(AU B, B)gm, (AU B)gms(B)
+(1-n(AUB,AUB))gmi(AUB)gma(AU B)
+ - Lsz + (1 —a)gmi(A)gme(B) + (1 — a)gmi(B)gma(A)
:o-L4L0+%-L0L1+1.L4L31-LOLO+%-L4L2+1-L4LO

2 2
+0.6- Las +0.4+ LyLy+ 0.4 LoLs

=Las 4+ Laz2 + Lio2 + Lieo =Le¢ +La+ Liv2 4+ Lieo = Liss2
6-2 6-2 6 6 6 6 6 6 6

gmypper(AUC) = (1 — a)gmi(A)gmz(C) + (1 — a)gmi(C)gma(A)

= 04 . L2L1 + 04 . L3L0 == L%

gmyppcer (AU BUC) = (1 = a)qma(C)gma(AU B) + (1 — a)gma (AU B)gm,(C)

=04 LoLo+04-LyLly = Las

gmyipper (-) is quasi-normalized without approximations, but it is not with approximations.
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Example 13: Fusion of three sources

Consider a set of labels L = {Lyin = Lo, L1, Lo, L3, Ly, Ly, Liax = L}, and a frame of discernment © = {4, B,C'} in

Shafer’s model (i.e. all intersections empty). Let’s take the three following qualitative sources of evidence

A B BUC | AUBUC
gmi(.) | L2 | Lo Lo Ly
gma(.) | Lo | Ls Lo Ls
gms(.) | Lo | Lo Ls Ly

Table XVIII

QUALITATIVE INPUTS FOR EXAMPLE 13

e Qualitative conjunctive rule:

If one applies the Qualitative Conjunctive Rule (QCR), one gets:

qma(A) = qmi(A)gmz(AUBUCUD)qmz(AUBUCUD) = LyL3ly = L2aly = Laa.

Similarly,
qm/\(B) = L4L3L1 + L4L3L5 = 431 435 2 10
qu(B U C) = L4L3Ls = L% = L%

qu(AUBUC’UD) :L4L3L1 :L% :L%

The total conflict is:

gma(0) = gmi(A)gma(B)gms(B U C) + gmy(A)gma(B)gms(AUBUCU D) + gm(A)gme(AUBUC U D)gms(BUC)
= LoLgLs+ LoLgly + LoL3Ls = L% +L% + L% = L% + L% + L% = L%

e Qualitative PCR:

Applying the proportional conflict redistribution for the first partial conflict gm1 (A)gmao(B)gms(B U C), one gets:
LoLsLs Ls
2L3 fop,

T1,A _ Y1,B _ Z1,BUC _ B
L2 L3 L5 L2 + L3 + L5 L10 6
SO,
T =I5l =L2s =1L
1,A 2 % % %
y1,8 =LsLs =Lss = Lis
=IsLs =Lss =Loas
Z1,BUC 543 53 25

Applying the proportional conflict redistribution for the second partial conflict gmq (A)gma(B)gmsz(AUBUC U D), one gets:

T2,A Y28 wiauvBucup _ Lelsli Ly

N _ Nt A S
Ly L3 L, Lo+ Ls+ Ly Lg (56):6 s
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SO,

ToA=1Loli1=L21 = Ls

’ G 5 &
yQB—LgL; =Lsi =Ly =Los
6 6 = 6
w1, auBucup = LiLy = Lia = Ly
6

Applying the proportional conflict redistribution for the third partial conflict gmi(A)gms(AU B U C U D)gms(B U C'), one

gets:
3,4 _ W2, AUBUCUD _ #2,BUC _ LoLsLs I
L, L3 Ly Lo+ L3+ Ls 6
S0,
T3 A= LQL% = L%
W2, AUBUCUD = LBL% = L%
z2,puc = LsLs = L2s
Summing, we get:
gmpcr(A) =Ly + Ly + Lis + Ly = Lios
6
gmpcr(B) = Liz + Lis + Los = L
quCR(B UC) = L% +L% —|—L% = L%
quCR(AUBUCUD) = Lg +L1/6 +L170 - L22/6

We can check that gmpcg(.) is quasi-normalized without approximations (i.e. when working within the refined set of linguistic
labels by keeping fractional indexes), but it is not quasi-normalized when using approximations of fractional indexes if we

want to work back within the original set of linguistic labels L = {Lwin = Lo, L1, L2, L3, L4, L5, Linax = L¢}-

e Discounted Qualitative PCR (formula (37)):

Let’s consider the discounting factor o = 0.6. Consider the previous example and discount it according to (37) applied in the

qualitative domain. One obtains:

quPCR(A) :Lé +06(Lé +L£ +Lé) = Lé +06Lm =L2a4
6 6

6

== L 13.2

6

quPCR(B) = L% +0.6- (L% +L%) :L% +0.6-L

[AIN)

+ 0.6 -

h

ol
ol

=L

S}

qupCR(BUC) = L% +0.6 - (L% +L%) =L

oz

gmppcr(AUBUC) = (1 — a)qgmi(A)gma(B)gme(BUC) =04 - LyLsls =04-Ls = L:
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6
6 6 6 6

=Lz +L1+04-Le =Lz + L2a =Lsa
6 6 6 6 6 6

gmppcr(.) is quasi-normalized without approximations, but it is not with approximations.

VII. CONCLUSIONS

With the recent development of qualitative methods for reasoning under uncertainty developed in Artificial Intelligence,
more and more experts and scholars have expressed great interest on qualitative information fusion, especially those working
in the development of modern multi-source systems for defense, robot navigation, mapping, localization and path planning and
so on. In this paper, we propose some solutions to handle the conflict and to weight the imprecision of the responses of the
experts, from the classical combination rules for qualitative and quantitative beliefs. Hence, we have presented a mixed rule
given by a weighted sum of the conjunctive and disjunctive rules. The weights are defined from a measure of non-specifity
calculated by the cardinality of the responses of the experts. This rule transfers the partial conflict on partial ignorance. Again,
the proportional conflict distribution rule redistributes the partial conflict on the element implied in this conflict. We propose
an extension of this rule by a discounting procedure, thereby, a part of the partial conflict is also redistributed on the partial
ignorance. We have introduced a measure of conflict between pair of experts and another measure of non-conflict between
pair of experts, as to quantify this part. In order to take heed of the non-specifity and to redistributed the partial conflict, we
propose a fused rule of these two new rules. This rule is created in such way that we retain a kind of continuity of the mass
on the partial ignorance, between both cases with and without partial conflict. Illustrating examples have been presented in
detail to explain how the new rules work for quantitative and qualitative beliefs. The study of these new rules shows that the
classical combination rules in the belief functions theory cannot take precisely into account the non-specifity of the experts

and the partial conflict of the experts. This is specially important for qualitative belief.
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