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Abstract - We present in this article a new eval-

uation method for classi�cation and segmentation

of textured images in uncertain environments. In

uncertain environments, real classes and boundaries

are known with only a partial certainty given by the

experts. Most of the time, in many presented papers,

only classi�cation or only segmentation are consid-

ered and evaluated. Here, we propose to take into

account both the classi�cation and segmentation re-

sults according to the certainty given by the experts.

We present the results of this method on a fusion of

classi�ers of sonar images for a seabed characteri-

zation.
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1 Introduction

Textured image classi�cation is a di�cult problem in
image processing and it is fundamental for a lot of ap-
plications. Many features can be extracted from the
images to classify, and many classi�cation algorithms
can be used [1]. Hence, it is really necessary to eval-
uate their performance in order to compare them and
choose the most adapted to the application.

For instance, with satellite or sonar images, hu-
man experts must be able to classify the types of soils
present in the images. Many types of soils can be en-
countered in a single image, and classi�cation must be
done on a local part of the image (pixel-wise, or often
on small tiles of e.g. 16 � 16 or 32 � 32 pixels) taken
as unit for the classi�cation algorithm. Hence, after
the image classi�cation, an implicit image segmenta-
tion is obtained according to the size of the tiles. One
image will be segmented into several patches, each one
corresponding to a class (e.g. a speci�c type of soil).

The image classi�cation methods are currently eval-
uated by the confusion matrix. Good-classi�cation
rates and error rates are usually calculated from this
matrix. We must know the real class of the considered
units of the images in order to establish the confusion
matrix. Confusion matrix does not give an evaluation
of the produced segmentation.

In order to evaluate the segmentation, we can not

only consider visual comparison between the initial im-
age and the segmented image. The image segmenta-
tion evaluation is still a studied problem [2, 3, 4, 5].
We can consider two cases: we do not have any a

priori knowledge of the correct segmentation, or we
have an a priori knowledge of the correct segmenta-
tion. Here we are in the second case because of the
confusion matrix for which we need to get referenced
images. In order to obtain these referenced images, ex-
perts must manually provide the image segmentation,
for example via a visual inspection. Zhang in [2] gives
a review of usual discrepancy measures based on dif-
ferent distances between the segmented-pixel and the
referenced-pixel. Most of the time, only one measure
of mis-segmented pixel is given. We will propose on
the contrary, in this article a linked study of one well-
segmented pixel measure and a mis-segmented pixel
measure. Indeed, in general case, if a pixel is not mis-
segmented, it is not necessary well-segmented. So we
can have few mis-segmented pixels but also few well-
segmented pixels: the segmentation is not good.

We think that global image classi�cation evaluation
must be made by evaluating both the classi�cation on
considered units (with the confusion matrix) and in
the same time by the evaluation of the produced seg-
mentation (well-segmented pixel measure and a mis-
segmented pixel measure) [6].

In real applications, it is really hard for one human
expert to provide a certain information on the class
and on the boundaries between the classes. For in-
stance, the seabed characterization with sonar images
cannot be made by human expert with a su�cient cer-
tainty. These images, illustrating this paper, are ob-
tained with many imperfections [7]. Figure 1 exhibits
the di�erences between the interpretation and the cer-
tainty of two sonar experts trying to di�erentiate the
type of sediment (rock, cobbles, sand, ripple, silt) or
shadow when the information is invisible (each color
correspond to a kind of sediment and the associated
certainty of the expert for this sediment expressed in
terms of sure, moderately sure and not sure).

We propose here a new approach for textured im-
age classi�cation and segmentation taking into account
the information given by multiple experts and their
certainty. In section 2, we show how to integrate the
expert certainty in confusion matrix and then deduce



Figure 1: Segmentation given by two experts.

a good-classi�cation rate and error classi�cation rate,
and how to fuse the di�erent expert opinions. In sec-
tion 3, we propose two new distance-based measures in
order to evaluate well and mis-segmented pixel taking
into account the experts certainties. This evaluation is
illustrated in section 4 on real sonar images, in order
to evaluate a fusion of the classi�ers presented in [7].

2 Image classi�cation evaluation

In this section, we propose an original evaluation ap-
proach for classi�cation based on a new confusion ma-
trix taking into account the uncertainty and the possi-
bility that one unit belongs more than one class. This
evaluation approach is adapted to the image classi�-
cation evaluation, but can be used for any classi�er
evaluation.

2.1 Classical Evaluation

A �rst step of the classical classi�cation evaluation can
be made by comparing the results of the classi�er to the
reality. But in order to evaluate a classi�cation algo-
rithm, many di�erent con�gurations and tests must be
considered. Classi�cation algorithms can yield many
variable results depending on the sample. Most of the
time, classi�cation algorithms evaluation is conducted
by the confusion matrix.

Confusion matrix is composed by the number cmij

of elements of the class i classi�ed in the class j. In
order to obtain rates making it easier to compare dif-
ferent size of databases, we normalize this confusion

matrix by:

Ncmij =
cmij

NX
j=1

cmij

=
cmij

Ni

; (1)

with N the number of considered classes and Ni the
number of element from the true class i. From this
normalized confusion matrix a good-classi�cation rate
vector can be written as:

GCRi = Ncmii; (2)

and an error classi�cation rate vector as:

ECRi =
1

2

0
@ NX
j=1;j 6=i

Ncmij +

NX
i=1;i 6=j

Ncmij

N � 1

1
A : (3)

This error classi�cation rate is the mean of the two
errors corresponding to the elements from a given class
i classi�ed in another class (�rst term), and corre-
sponding to the elements classi�ed in a given class j
being from another class i (second term). We do not
have to normalize the �rst term because of the nor-
malization of the confusion matrix on the rows, but
the second term must be normalized by the number
of rows minus one (because of the Ncmii term corre-
sponds to the good-classi�cation).

Thus image classi�cation algorithms evaluation
must be made not only on one image but on the whole
images database. As a consequence, we have to con-
sider a non-normalized confusion matrix on each image
and normalize the sum of the matrix confusion on all
images of the database.

2.2 Evaluation with certainty given by

each expert

We consider here a general case where information is
given by the expert on each pixel and the classi�cation
algorithm is made on an unit of n�n pixels. Hence on
each unit, more than one class can be present. Gen-
erally, the classi�cation algorithms can �nd only one
of these classes. In order to take into account the in-
homogeneous units, consider that if the classi�cation
algorithm �nds one of these classes on the unit, the
algorithm is right in the proportion of this found class
in the n� n pixels-unit and it is wrong in the propor-
tion of the other classes in the considered unit. For
instance, imagine the case where the expert considers
a tile of size 16� 16 pixels and declares that on a part
of the unit, 50 given pixels belong to class 1, and 206
other pixels belong to class 3. If the classi�cation al-
gorithm �nds the unit belongs to class 1, the confusion
matrix will be computed by the recurrence relations:
cm11  cm11 + 50=256 and cm31  cm31 + 206=256.
Hence the confusion matrix is not composed of integer
numbers and Ni is also not integer; but the sums of
column are still integers.

If the expert can give the class with a certainty
grade, we must not take equally two di�erent grades
in our classi�cation evaluation. For instance, in sonar



application, the operator can be sure that one part of
the image as belonging to rock, and be totally doubt-
ful on another part of the image. Classical confusion
matrices suppose that the reality is perfectly known
and that is rarely the case especially in image classi�-
cation. We propose to graduate this di�erence of infor-
mation by di�erent weights corresponding to the di�er-
ent grades of certainty that are considered. In the con-
fusion matrix, such weights could be integrated easily
in the general sum. For example, consider three grades
of certainty (sure, moderately sure and not sure), we
can choose respectively the weights: 2/3, 1/2 and 1/3.
If one expert labels a unit as belonging to the class
1 (e.g. rock), with a moderate certainty, and if the
classi�cation algorithm �nds the class 1, considering
the previous given weights, the confusion matrix will
be updated such as: cm11  cm11 + 1=2. If the
classi�cation algorithm �nds the class 2 (e.g. sand)
on the considered unit, the confusion matrix becomes
cm12  cm12 + 1=2. Hence the sums of columns are
not integer anymore.

In order to fuse the referenced images provided by
di�erent experts, we can compare the classi�ed image
with all the referenced images by the experts. Hence
we obtain as many non-normalized confusion matrices
as experts, and we can simply combine them by ad-
dition. This can be done also if the experts do not
provide certainty, in such a case the weight is 1 for all
units.

By the simple addition of the non-normalized con-
fusion matrices, we weight the obtained results by the
image size or the considered unit number.

In order to obtained rates, we normalize the ob-
tained confusion matrix with equation (1) and calcu-
late the good-classi�cation rate vector with equation
(2) and the error classi�cation rate vector with equa-
tion (3). Of course these rates are not percentages
anymore. For instance, the good-classi�cation rate is
no longer the percentage of well classi�ed units, be-
cause the weights given by the inhomogeneous units
or by the expert certainty are rational. These newly
obtained confusion matrix, good-classi�cation rate and
error classi�cation rate give a good evaluation of clas-
si�cation taking into account the inhomogeneous units
and certainty of the experts. This approach can be
applied in every domain where we try to classify un-
certain elements, and not only in image classi�cation.

3 Segmentation Evaluation

Image classi�cation provides an implicit image segmen-
tation, the boundaries are given by the di�erence of
classes between two adjacent tiles. A good image clas-
si�cation evaluation has to study this obtained image
segmentation.

Many approaches can be considered in order to ob-
tain boundaries. This is not the subject of this paper
and the following segmentation evaluation can be ap-
plied to all image segmentations given by boundaries
as a succession of pixels.

We propose here a linked study of one well-
segmented pixel measure and a mis-segmented pixel
measure. Generally one of these measures is consid-
ered in the case with an a priori knowledge [2, 8, 9].
The well-segmented pixel measure is a well-detection
boundary measure and the mis-segmented pixel mea-
sure is a false detection boundary measure. We show
how these two measures can take into account the un-
certainty of the expert on the position and existence of
the boundaries, assuming that each certainty grade is
represented by a weight.

3.1 Well-detection boundary measure

First, for each found boundary pixel f , search the mini-
mal distance dfe between f and all the boundary pixels
provided by the expert e. Hence the pixel e is a func-
tion of f , and we should note it as ef , but in order to
simplify notations, it is referred to as e in the rest of
the paper. We take here an Euclidean distance but any
other distance can be envisaged. The certainty weight
of the pixel e given by the expert is noted as We. We
de�ne a well-detection criteria vector by:

DCf = exp(�(dfe:We)
2):We: (4)

This criteria gives a Gaussian-kind distribution of
weights with a standard deviation given by the cer-
tainty weights, as shown in �gure 2.

Figure 2: Distance weight for the well-detection crite-
ria.

The well-detection boundary measure is de�ned by
the normalized well-detection criteria given by:

WDC =

P
f DCf

(maxf (DCf ):
P

eWe)
a : (5)

Hence, this measure is de�ned between 0 and 1. In real
applications, this criteria remains small even for very
good boundary detection, so we can take a = 1=6 in
order to accentuate small values.

This criteria only takes into account the distance

from the found boundary to the contour provided by
the expert. However, the reference boundary has a
local direction which is another aspect we have to con-
sider. Indeed, for instance, a found boundary can cross
a given boundary orthogonally: in this case some pix-
els from the found boundary are very near (in terms
of distance) to pixels from the reference boundary but
that is not a good detection.



In order to take into account the local direction, we
count, for a given pixel f of the found boundary, how
many pixels from the found boundary are linked by the
minimal distance to the same pixel e of the reference
boundary. This number is noted nef , e.g. on �gure 3
we have nef = 3 for three di�erent f . We rede�ne the
well-detection boundary measure by:

WDC =

P
f DCf=nef

(maxf (DCf=nef ):
P

eWe)
a : (6)

Figure 3: Example of nef for three given f , the found
boundary is represented by green squares and the ref-
erenced boundary by a black line.

The problem is that the number nef does not ad-
equately represent a number of pixels on the same
boundary and take into account only orthogonal di-
rection. However this measure gives a good evaluation
of the proportion of the found boundaries.

3.2 False detection boundary measure

The false detection boundary measure is based on the
same principle as the well-detected boundary measure,
but the Gaussian-kind distribution of weights must be
inversed. Hence we can de�ned a false detection crite-
ria by:

FDCf = 1�DCf=We; (7)

where the pixels f and e are linked by the minimal
distance dfe. As a consequence, the false detection
boundary measure can be de�ned by the normalized
false detection criteria by:

FD = 1� exp

�
�

P
f (FDCf :nef )

maxf (FDCf :nef ):
P

eWe

�
: (8)

Here we have described the two measures FD and
WDC that compare two images: one image classi�ed
by the algorithm and the other one provided by only
one expert. In order to evaluate image segmentation al-
gorithms on many images and/or fuse the expert opin-
ions, we can use a weighted sum of these both mea-
sures. The weights are given by the image sizes, which
can be di�erent for all considered images.

4 Fusion of classi�ers of sonar

images

We present here our image classi�cation and segmenta-
tion evaluation in a fusion of classi�ers of sonar images

presented in [7]. Indeed, underwater environment is a
very uncertain environment and it is particularly im-
portant to classify seabed for numerous applications
such as Autonomous Underwater Vehicle navigation.
In recent sonar works (e.g. [10, 11]), the classi�cation
evaluation is made only by visual comparison of one
original image and the classi�ed image. That is not
satisfying in order to correctly evaluate image classi�-
cation and segmentation.

4.1 Database

Our database contains 42 sonar images provided
by the GESMA (Groupe d'Etudes Sous-Marines de
l'Atlantique). These images were obtained with a Klein
5400 lateral sonar with a resolution of 20 to 30 cm in
azimuth and 3 cm in range. The sea-bottom depth was
between 15 m and 40 m.

Three experts have manually segmented these im-
ages giving the kind of sediment (rock, cobble, sand,
silt, ripple (horizontal, vertical or at 45 degrees)),
shadow or other (typically ships) parts on images,
helped by the manual segmentation interface presented
in �gure 4. All sediments are given with a certainty
level (sure, moderately sure or not sure), and the
boundary between two sediments is also given with a
certainty (sure, moderately sure or not sure). Hence,
every pixel of every image is labeled as being either
a certain type of sediment or a shadow or other, or a
boundary with one of the three certainty levels. We
choose the weights: 2/3, 1/2 and 1/3, for respectively
the certainty levels: sure, moderately sure and not
sure. The proportion of each sediment given by the
three experts are given in the table 1. Note that the
proportion of the di�erent sediment are very di�erent
and that can be a problem for the classi�cation. The
proportions are very similar for the three experts. We
see that sand and silt are the most present and the
shadow and other are very few represented on these
images.

Figure 4: Manual Segmentation Interface.

4.2 Fusion approaches

We consider here four methods of features extrac-
tion based on four representations of the image:



Table 1: Proportion of sediment in the database (%)

Expert 1 Expert 2 Expert 3
Rock 9.64 9.62 12.78
Cobble 6.00 3.71 8.42
Ripple 13.96 15.98 13.53
Sand 26.97 35.62 28.40
Silt 42.85 34.57 35.20

Shadow 0.55 0.44 0.26
Other 0.10 0.05 1.40

co-occurrence matrices, run-lengths matrix, wavelet
transform and Gabor �lters [7]. They provide respec-
tively 24, 20, 63 and 4 parameters. These four feature
sets are independently considered as the inputs of a
multilayer perceptron (MLP) classi�er presented in [7].
In order to illustrate our evaluation approach only two
of the classi�ers fusion presented in [7] are considered
coming from the evidence theory.

The evidence theory is based on basic belief assign-
ments (bba) de�ned by mapping of each subset of the
space of discernment � = fC1; ; Cng onto [0; 1], such
that:

X
X22�

m(X) = 1; (9)

where m(:) represents the bba.
The principal di�culty is the choice of a bba ac-

cording to the application. We can consider two types
of approaches: one based on a probabilistic model [12]
and another one based on distance transformation [13].
Appriou in [12] proposes two equivalent models based
on three axioms. The �rst one that we use in this arti-
cle in order to fuse the decisions of the four classi�ers
is given by:8>>>>><

>>>>>:

mji(fCig)(x) =
�ijRjp(qj jCi)
1+Rjp(qj jCi)

mji(fCig
c)(x) =

�ij
1+Rjp(qj jCi)

mji(�)(x) = 1� �ij

(10)

where qj is the jth classi�er (supposed cognitively
independent), j = 1; :::;m, �ij are reliability coe�-
cients on each classi�er j for each class i = 1; :::; n
(in our application we take �ij = 1), and Rj =�
maxqj ;i p(qj jCi)

��1
.

The approach proposed in [13] is used in order to
fuse the numerical outputs of the four classi�ers. The
bba are given by:8<

:
mji(fCig=x

(t))(x) = �ij'i(d
(t))

mji(�=x
(t))(x) = 1� �ij'i(d

(t))
(11)

where
�
x(t)
�
is a set of learning vectors, d(t) = d(x; x(t))

is a distance between x and x(t) and Ci is the class of
x(t). 'i is a distance function given by:

'i(d) = exp(��id
2); (12)

where �i is a positive parameter associated to the class
Ci.

The combination of the bba is based on the orthog-
onal non-normalized Dempster-Shafer's rule given in
[14] for all X 2 2� by:

m(X) =
X

Y1\:::\YM=X

MY
j=1

mj(Yj); (13)

where Yj 2 2� is the response of the expert j, and
mj(Yj) the associated belief function. In order to con-
duct the decision, we consider the maximum of pignis-
tic probability [15].

4.3 Evaluation

Here, we consider six di�erent classes given by the table
2. The images are considered as a succession of tiles of
size 32�23 pixels. Hence the 42 images provide 38997
tiles, units for the classi�cation. The proportion of the
number of di�erent sediments on a tile is given in the
table 3 for each expert. These proportions are very
similar for the three experts.

Table 2: Repartition of the kind of sediment in classes

class sediment
class 1 rock
class 2 cobble
class 3 ripple
class 4 sand
class 5 silt
class 6 shadow and other

Table 3: Proportion of number of di�erent kind of sed-
iments on the tiles (%)

Expert 1 Expert 2 Expert 3
1 sediment 77.79 79.65 79.94
2 sediments 20.70 19.30 19.33
3 sediments 1.48 1.03 0.72
4 sediments 0.04 0 0
5 sediments 0 0 0
6 sediments 0 0 0

The total conict between the three experts is
0.2244. This conict comes essentially from the dif-
ference of opinion of the experts and not from the tiles
with more than one sediment. Indeed, we have a weak
auto-conict (conict coming from the combination of
the same expert three times). The values of the auto-
conict for the three experts are: 0.0496, 0.0474, and
0.0414.

The database is divided into three parts. The �rst
part composed of 20 images (with only 12505 tiles) is
used for the learning step of the multilayer perceptron.
A second part of 10 images (composed of 12650 tiles)



serves the learning step of both the fusion approaches.
The used information for these learning stages are only
considered given by one of the three experts (expert 1).
The last 12 images (corresponding to 13841 tiles) are
used in order to evaluate the classi�er fusion methods,
considering the information given by the two other ex-
perts.

The �gure 5 describes the manual segmentation
made by one expert and the automatic classi�cation
reached by both classi�er fusion methods. The dark
blue part corresponds to the non considered part of
image. First at all if we look on �gure 5 the results
of the classi�cation of the same image, we note that
the sediments are quite well classi�ed. However, just
looking this �gure 5 we can not say if the classi�cation
is good or not, and if one fusion approach is better or
not: it remains very subjective. Moreover it could be
good for this image and not for others. So we propose
to use our measures.

Figure 5: Manual segmentation (�rst) and automatic
segmentation given by the probabilistic approach (sec-
ond) and the distance approach (third).

First we compare the obtained results to the infor-
mations given by only the expert 2. The obtained nor-
malized confusion matrix on the test database is given

by for the probabilistic approach:

8>>>>>>>><
>>>>>>>>:

rock cobble ripple sand silt other
0:00 0:01 0:00 0:01 0:01 99:97
13:49 24:62 0:00 33:31 0:00 28:57
5:37 2:92 47:70 22:33 3:46 18:22
8:78 3:10 6:97 59:51 21:05 0:59
0:20 0:28 0:99 16:41 82:10 0:00
39:45 0 0 0 29:57 30:97

9>>>>>>>>=
>>>>>>>>;

and for the distance approach by:

8>>>>>>>><
>>>>>>>>:

rock cobble ripple sand silt other
0 0:01 99:97 0:01 0:02 0
0 32:05 20:74 34:05 13:16 0
0 2:90 51:51 9:28 36:31 0
0 2:24 4:08 28:93 64:74 0
0 0:00 0:14 4:42 95:44 0
0 0 30:96 0 69:03 0

9>>>>>>>>=
>>>>>>>>;

We note that the distance approach does not clas-
sify rock and other. The most of tiles are classi�ed
in ripple and silt and few in sand. The probabilistic
approach provides a full confusion matrix. In order
to summarize these results, we can give the vector of
good-classi�cation rate and the vector of error classi�-
cation rate given by [0 24.62 47.70 59.51 82.10 30.97]
and [94.30 59.13 54.55 82.84 71.18 148.05] for the prob-
abilistic approach and by [0 32.05 51.51 28.94 95.44 0]
and [50.00 64.03 144.84 72.88 149.43 50.00] for the dis-
tance approach. We recall that is not a percentage be-
cause of the weights. The vector of good-classi�cation
rates can provide a mean of good-classi�cation rate.
We obtain here 62.43 for the probabilistic approach
and 50.55 for the distance approach. These results
tend to prove that the probabilistic approach gives bet-
ter results than the distance approach. We can also
study the di�erence on homogeneous tiles and inhomo-
geneous tiles. For instance, for the probabilistic-based
approach, the normalized confusion matrix on homo-
geneous tiles is given by:

8>>>>>>>><
>>>>>>>>:

rock cobble ripple sand silt other
0 0 0 0 0 100:00

13:49 24:62 0 33:31 0 28:58
5:37 2:92 47:70 22:33 3:46 18:22
8:78 3:10 6:97 59:51 21:05 0:59
0:21 0:28 0:99 16:41 82:10 0
0 0 0 0 0 0

9>>>>>>>>=
>>>>>>>>;

and on inhomogeneous tiles:

8>>>>>>>><
>>>>>>>>:

rock cobble ripple sand silt other
25:50 11:12 7:41 15:09 14:14 26:73
20:97 17:84 8:32 34:02 8:15 10:71
13:50 5:71 30:29 29:73 7:75 13:02
11:21 5:79 11:86 44:95 21:33 4:85
13:79 3:24 10:24 16:40 53:55 2:77
39:46 0 0 0 29:58 30:97

9>>>>>>>>=
>>>>>>>>;

We observe an important di�erence. The good-
classi�cation rate is better on the homogeneous tiles
(62.43) than on the inhomogeneous tiles (39.99). Hence



the classi�cation of the inhomogeneous tiles is a real
di�culty.

The �gure 5 seems to show that the segmentation of
the distance approach is better than the probabilistic
approach. We have to evaluate the segmentation pro-
ducted by the classi�cation with our measures. Note
that this evaluation is highly depending on the size
of the tile, here: 32�32 pixels. Our proposed mea-
sures, given respectively by the equations (6) and (8)
expressed in percentage, provide in the case of prob-
abilistic approach 59.84 for the good detection crite-
ria and 45.64 for the false alarm criteria, and for the
distance approach 57.22 for the good detection crite-
ria and 48.54 for the false alarm criteria. The good
detection criteria and the false alarm criteria of the
probabilistic-based fusion are better than the good de-
tection criteria of the distance-based fusion. However,
we have to take care of both measures that are study-
ing together. Indeed, on the �gure 5, the probabilistic-
based method provides a lot of boundaries, and so the
chance to contain good detection criteria increases, but
the false alarm increases also.

In order to con�rm these results, we can fuse easily
these measures with the resulted measures obtained
with the expert 3. The good-classi�cation rate and
error classi�cation rate vectors are respectively given
by [26.73 14.54 39.83 60.56 81.83 0] and [61.71 57.01
58.47 109.05 111.89 74.16] for the probabilistic-based
method and [0 17.94 48.02 30.09 95.83 0] and [50.00
63.31 70.10 87.40 169.54 50.00] for the distance-based
method. The mean of the good-classi�cation rate is
58.39 for the probabilistic-based method and 49.24 for
the distance-based method. The results of the segmen-
tation evaluation are given by the good detection crite-
ria and the false alarm criteria: respectively 62.76 and
54.57 for the probabilistic-based approach and 60.83
and 55.90 for the distance-based approach. The fusion
of measures originally from the experts shows that the
probabilistic-based method is better than the distance-
based method. However the di�erence is lower than
with only one expert.

5 Conclusions

We have proposed a new evaluation of the image clas-
si�cation and segmentation based on new measures in
uncertain environments. In order to achieve a good
evaluation of the image classi�cation, we have seen that
a linked study of the classi�cation and of the produced
segmentation is necessary. The proposed classi�cation
evaluation can be used independently for every kind
of uncertain units classi�cation, e.g. is a basic belief
assignment is associated to the units. The proposed
segmentation evaluation can be used for all image seg-
mentation approaches and not only for a segmentation
produced by a classi�er. The proposed confusion ma-
trix takes into account the uncertainty of the expert
and also the inhomogeneous units (e.g. patch-worked
images in the case of image classi�cation). Moreover
we have de�ned good-classi�cation and errors classi�-
cation rates from our confusion matrix. The proposed

segmentation evaluation considers good and false de-
tection boundary measures where the subjectivity of
the expert is considered by the given uncertainty.

In our proposed evaluation approach, the fusion of
experts opinions is made by the fusion of our di�er-
ent measures calculated for each expert. This fusion is
made by using a simple sum: the uncertainty is con-
sidered directly in our measures. It can be interesting
to fuse the informations provided by experts before the
evaluation in order to obtain an uncertain and impre-
cise reality. This new reality can used for instance for
learning and also for the evaluation of classi�ers.
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