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Abstract

In this paper, we propose a comparative statistical study of
the ocean bistatic scattering which is useful in a problem
of maritime radar target detection. We firstly introduce the
electromagnetic properties and geometrical aspects of the
sea surface. The scattered field of the sea surface is com-
puted from the Physical Optics (PO) and compared with
the Kirchhoff Approximation (KA) and the Small Perturba-
tions Method (SPM). Early works have already characteri-
zed the Radar Cross Section (RCS) with a statistical model
as the Weibull and K distributions. However, these models
are limited especially when the probability density func-
tion of the sea surface RCS has a heavy tail. Consequently,
we use a family of laws called the α-stable distributions.
We compare the results obtained with each model by using
a Kolmogorov-Smirnov test from several random sea sur-
faces and give a confidence interval for the estimated para-
meters of the α-stable distribution. We finally analyse the
impact of distribution errors on detection performance.

1 Introduction

The characterization of sea clutter is a fundamental step for
a radar system conception, especially to detect a target wi-
thin sea clutter. For example, the scattered field from com-
plex objets on sea surface has been computed [4]. The sea
clutter is estimated from two methods :
– a statistical modeling from observations.
– a physical modeling from environmental phenomena.
The statistical modeling is often used thanks to its simpli-
city of implementation. The physical modeling is develo-
ped in parallel and is compared to the statistical modeling.
In this paper, a statistical modeling is used to characterize
the probability density function of the sea surface RCS.
In the literature, some statistical laws have been used to cha-
racterized the sea clutter from its probability density func-
tion. In practice, the sea clutter is non-gaussian and spiky.
Various distributions have been used to fit the sea clutter
such as the Weibull distribution [9, 14] or the K distribu-
tion [17, 16]. The phenomena of heavy-tails and asymme-
try can be observed on the probability density function of
the sea surface RCS. In probability theory, heavy-tailed dis-
tributions are probability distributions whose tails are not
exponentially bounded : they have heavier tails than the ex-
ponential distribution. A skewed (non-symmetric) distribu-

tion is a distribution in which there is no mirror-imaging.
A class of distributions exhibits these constraints : the α-
stable distributions.
In the context of sea clutter modeling, the α-stable dis-
tributions have been exclusively used in the imagery
domain. For example, the clutter has been modeled in
ultra-wideband (UWB) Synthetic Aperture Radar (SAR)
images [3]. The α-stable distributions characterize the spe-
ckle within SAR images [2]. In [13], the α-stable distribu-
tions are used to fit the RCS of sea surface and ship. Howe-
ver, this approach is limited because the RCS is computed
in a backscattering configuration.
The remainder of this paper is organized in the following
manner. In section 2, we characterize the sea surface model
and develop the computation of the scattered field by a sea
surface. In section 3, we enumerate the continuous probabi-
lity density functions used to estimate the sea surface RCS :
Weibull, K and α-stable distribuions. In section 4, we si-
mulate the RCS depending on angle for several sea surface
in a bistatic configuration and compare the quality of mo-
delss with a Kolmogorov-Smirnov test. We finally give a
confidence interval for the parameters of the α-stable dis-
tributions and analyse the impact of distribution errors on
detection performance.

2 Sea surface RCS

In this section, the electromagnetic characteristics and geo-
metrical aspects of sea surface are detailed. The scattered
field will be computed from a deterministic sea surface by
using the Physical Optics.

2.1 Sea surface modeling

The scattered field of the sea surface depends both on its
electromagnetic characteristics and its geometrical aspects.
The electromagnetic characteristics of the sea are defined
by the dielectric constant which depends on the tempera-
ture and the salinity [11]. The geometric properties of the
sea surface can be modeled as a random height as a function
of the position (x, y) and time t. However, the power spec-
tral density of the wave height is generally given to model
the waves. In this contribution, the waves are generated by
using the Elfouhaily [8] sea spectrum. Indeed, the Elfou-
haily sea spectrum gives a comprehensive directional wave
spectrum valid for the full range of gravity and capillary
waves. This model is also agreed with the slope model pro-
posed by Cox and Munk [5, 6]. Two sea surfaces have been
generated with the Elfouhaily sea spectrum, with a wind
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FIGURE 1 – Example of surface generated with the Elfou-
haily sea spectrum.

speed v=5 m/s and wind direction ψ = 0◦ (Figure 1(a))
and ψ = 50◦ (Figure 1(b)). The wind direction has a non
negligible impact on the waves orientation.
To sum up, the sea surface are generated by using the El-
fouhaily sea spectrum. The computation of scattered field
by the sea surface is developed in the below section.

2.2 Scattering model

The scattered field is estimated by using the Physical Optics
(PO). The initial point of PO is the currents produced by an
incoming electromagnetic wave (Ei,Hi). The electroma-
gnetic wave creates the induced magnetic Jm and electric
Je currents given by :

Jm = −n×E Je = n×H (1)

where n is the unit normal vector to the surface, E and H
are respectively the total electric and magnetic fields at the
surface.
The incident field can be considered as a plane wave if the
source illuminating the target is at a far enough distance.
The scattering field from the illuminated surface S is given
by :

Es =
ike(−ikR)

4πR

∫
S

[ks×(ηks×Je+Jm)]e−ikks.rds (2)

where k is the wavenumber, R is the distance between the
center of the referential and the receiver, ki and ks are res-
pectively the unit directional vectors of the incident and
scattering electromagnetic wave. The parameter η is the im-
pedance of the medium and r is the position vector of a
point in S. The equation (2) can be solved by decomposing
the sea surface into triangular subregions [7].

3 Models of estimation

Several models have been used for non-Gaussian amplitude
sea clutter returns :
– the Weibull distribution.
– the K distribution.
– the α-stable distribution.
Amongst the more well known model is the Weibull distri-
bution. The K distribution provides a good fit to sea clut-
ter amplitude returns. Recently, the α-stable distribution

has been used to model sea clutter. The probability density
functions and the cumulative density functions are develo-
ped in the below section and used in the section 4.

3.1 The Weibull distribution

A random variable X is said to be a Weibull distribu-
tion [18] with parameters λ ∈ R+∗ and k ∈ R+∗, noted
X ∼ W(λ, k), if its probability density function has the
form :

fW(λ,k)(x) =

{
k

λ

(x
λ

)(k−1)
e−( xλ )

k

if x ≥ 0

0 otherwise.
(3)

where λ is the scale parameter and k is the shape parameter.
The cumulative density function associated to a random va-
riable X ∼ W(λ, k) is :

FW(λ,k)(x) =

{
1− e−( xλ )

k

if x ≥ 0

0 otherwise.
(4)

3.2 The K distribution

The K distribution has been first introduced by Jakeman
and Pusey [10] to model the sea clutter. A random variable
X is said to be a K distribution with parameters ν > 1 and
a ∈ R+∗, noted X ∼ K(ν, a), if its probability density
function has the form :

fK(a,ν)(x)=


2

aΓ(ν + 1)

( x
2a

)
ν+1Kν

(x
a

)
if x ≥ 0

0 otherwise.

(5)

where a is the scaling parameter, ν is the shape parameter,
Γ(.) the gamma function and Kν is the modified Bessel
function of the second kind of order ν [1].
The cumulative density function 1 associated to a random
variable X ∼ K(ν, a) is :

FK(a,ν)(x)=

1− 1

Γ(ν + 1)2ν

(x
a

)
ν+1Kν+1

(x
a

)
if x ≥ 0

0 otherwise.

(6)

3.3 The α-stable distribution

The French mathematician Paul Lévy introduced a family
of distributions called the α-stable distributions [12].
A random variable X is said α-stable, noted
X ∼ Sα(β, γ, δ), if its characteristic function is [19] :

φSα(β,γ,δ)(t)=

{
e(itδ−|γt|

α[1+iβtan(πα2 )s(t)(|t|1−α−1)]) ifα 6=1

e(itδ−|γt|[1+iβ
2
π s(t) log |t|]) ifα=1

(7)

with α ∈]0, 2] the characteristic exponent, β ∈ [−1, 1]
the skewness parameter, γ ∈ R+∗ the scale parameter,
δ ∈ R is the location parameter and s(t) the sign function.

1. Refers to [1] for the properties of the Bessel function to
compute the cumulative density function



The representation of an α-stable probability density func-
tion, noted fSα(β,γ,δ), is obtained by calculating the Fourier
transform of its characteristic function :

fSα(β,γ,δ)(x) =

∫ ∞
−∞

φSα(β,γ,δ)(t)e
(−itx)dt (8)

The cumulative density function of an α-stable distribution
is computed numerically.
In the remainder of this paper, the probability density func-
tion of the sea surface RCS (Weibull, K and α-stable) is
estimated by using the Least Squares Estimation (LSE) be-
cause the LSE minimizes the least-squares error.
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FIGURE 2 – Geometrical configuration.

4 Experiments results
The electromagnetic characteristics and the geometrical as-
pects of the sea surface have been developed in section 2
and the scattered field is estimated by using the Physical
Optics. Notice that the angles used in the following are de-
fined according to Figure 2. A dataset has been created with
500 deterministic sea surfaces (30×30) m-sized for the be-
low configuration : wind speed v = 5 m/s, wind direction
ψ = 0◦, salinity S = 35 ppt, temperature T = 20◦C, θi
and θs ∈ [0◦; 90◦]. The operating frequency is 10 GHz. The
scattering coefficients σmn is dependent on wave polariza-
tions in emission m and in reception n (in the following V
means vertical and H means horizontal).
For the statistical study, θs is considered as a random va-
riable for a fixed emitter θi = 30◦. The PO result (ave-
rage of 10 RCS in this example) seems to indicate good
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FIGURE 3 – Bistatic RCS of a random sea surface generated
10 times for a vv-polarization with θi = 30˚.

accuracy with results obtained by the Small Perturbations
Method [15] (SPM) (we represent also the Kirchhoff Ap-
proximation result [15] (KA)) (see Figure 3). The parameter
θs = 45˚ is then fixed to build a histogram of RCS from 50
deterministic sea surface (Figure 4). The histogram is esti-
mated by the models described in section 3. The same step
is realized 15 times. The same study is realized by fixing
θi ∈ [0◦; 90◦] and by considering θs as a random variable.
Note that we observe a reverse skew to the data. This pheno-
menon depends on the generation of deterministic sea sur-
face. Indeed, the scattered field from a triangular subregion
computed from the Physical Optics is null if the surface is
not illuminated.

4.1 Goodness-of-fit test
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FIGURE 4 – An example of RCS and its estimations with
θi = 45◦ and θs = 30◦.

FIGURE 5 – Boxplots for the KSSTAT and the p-value.

The quality of a model can be evaluate by using a test of
goodness-of-fit such as the χ2 test and the Kolmogorov-
Smirnov test (K-S test). The χ2 goodness-of-fit depends on
an adequate sample size for the approximations to be valide.
In the remainder of this paper, the K-S test is used because
this test is based from the cumulative density function and it
will be more convenient to compute. We test the null hypo-
thesis H0 “the samples X with some unknown distribution
L is equal to a particular distribution L0” :

H0 : L = L0, H1 : L 6= L0 (9)

The Kolmogorov-Smirnov test at the 5 % significance level
compares the data cumulative distribution function with the
cumulative density function of the fitted distribution. The
distribution models are compared by boxplot, by precising



the p-value (the critical value to reject the null hypothesis)
and the ksstat (the greatest discrepancy between the obser-
ved and expected cumulative frequencies). The percentage

(a) Parameter α.

(b) Parameter β.

(c) Parameter γ.

(d) Parameter δ.

FIGURE 6 – Confidence intervals of α-stable parameters.

of rate success is approximately 97 % for the α-stable, 50 %
for the Weibull distribution and 10 % for theK distribution.
The Weibull andK distributions are not adequate for mode-
ling the probability density function of sea surface RCS. In-
deed, the boxplots of p-value and KSSTAT (Figure 5) show
there are fewer errors with the α-stable law. The estima-
tion of the probability density function shows also that the
Weibull and K distributions are not suitable to fit the data
(Figure 4). The α-stable distribution is characterized by an
infinite variance which indicates it does not directly trans-
late to a physical model. This property has an impact on a
random process of a scattering coefficient. Indeed, extreme
values can be observed in Figure 7. The extreme values are
dependent of the deterministic sea surface. We continue the
study by calculating a confidence interval for the parame-
ters of α-stable distribution.
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FIGURE 7 – Example of 500 sea surface RCS.

4.2 Confidence intervals

A confidence interval gives an estimated range of α-stable
parameter values : the lower bound corresponds to the
first quartile and the upper bound is the third quartile. We
plot also the probability value of each parameter. The Fi-
gure 6(b) shows the parameter β is closed to -1. Indeed, the
probability of the parameter β = −1 is high (Figure 8) and
could be fixed to -1. It is difficult to extract a law for the pa-
rameter α (Figure 6(a)) and the probability of α = 2 is high.
It is the same analysis for the parameter γ (Figure 6(c)).
However, the probability value of γ could be modeled by
a Gaussian distribution (Figure 8). In Figure 8, we can ob-
serve three modes : the mode around 30 corresponds to the
diagonal in Figure 6(d), the mode around 20 corresponds to
the value closed to the diagonal and the mode around -25
corresponds to the other values. However, it is difficult to
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FIGURE 8 – Probability of parameter.

extract information from confidence intervals : we choose
to work with the probability density function of estimated
parameters. The next section analyses the influence of po-
larizations, wind direction and wind speed on probability
density functions of α-stable parameters.

4.3 Influence of parameters

In this section, 24 configurations are analyzed by varying
polarizations (HH,VV, VH and HV), wind speed (3m/s and
5m/s) and wind direction (0◦, 25◦ and 60◦).



4.3.1 Parameters α, β and γ

The probability density functions of parameters α, β and γ
have been superposed (Figure 9). The probability density
functions are independent of polarizations, wind speed and
direction of speed. Consequently, these parameters can not
be use to discriminate the different configurations.
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FIGURE 9 – Represantation of probability density functions
for the parameters α, β and γ.

4.3.2 Parameter δ

We observe firstly the influence of the polarization on the
probability density function of δ. The configuration used
is defined by : wind speed v=3 m/s and wind direction
ψ = 0◦. The co-polarizations (HH and VV) and the cross-
polarizations (VH and HV) give similar results. The cross-
polarizations HV and VH can be discriminated. Indeed, the
modes are shifted. The probability density functions obtai-
ned for cross-polarizations have three modes against two
modes for co-polarizations.
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FIGURE 10 – Influence of polarization on probability den-
sity function of parameter δ.

To analyze the influence of wind speed, polarization and
wind direction are fixed. We consider firstly the co-
polarization VV with wind direction ψ = 0◦. We observe
a mode at -18 in common, which represents the most pro-
bable value. Two modes smaller for the wind speed 3 m/s
are visible at the values 12 and 32. These values are dif-
ferent for the wind speed 5 m/s and are equal to 18 and 38.

The smallest mode corresponds to the case θi = θs. The
same conclusions can be made for wind directions ψ = 25◦

and ψ = 60◦. For the polarization VV, the values of modes
are equals to 30 and 10 for the wind speed 3 m/s and 16 and
26 for the wind speed 5 m/s.
For the cross-polarizations, the analysis is different. Indeed,
we observe only two modes. The representation of the pro-
bability density function could be fit with a Gaussian. Ho-
wever, a small pick is visible. For the polarization HV, the
probability density function of parameter δ for the wind
speed 3 m/s is less than to the wind speed 5 m/s for the
values belonging to [-40,-20]. It is more difficult to make
the same observation for the polarization VH.
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FIGURE 11 – Influence of wind speed on probability den-
sity function of parameter δ.

To observe the influence of wind direction on the probabi-
lity density function of position parameter δ, the polariza-
tion and the wind speed are fixed. The configuration used is
defined by the polarization VV and wind speed v=5 m/s.
We observe three modes with values -18, 18 and 28 for
any wind direction. Curves are superimposed irrespective
of wind direction. The same analysis can be made for the
wind speed v=5 m/s but the modes are shifted. The repre-
sentation of probability density function is independent of
wind direction.
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4.4 Statistical models for probability of detection

Denote PA the sea surface RCS probability density func-
tion and PT the target RCS probability density function.
We assume that PA and PT are characterized by heavy-
tails and the hypothesis “sea surface RCS and target RCS
can be modeled by α-stable distribution” are verified by the
Kolmogorov-Smirnov test. For a fixed threshold Z, the pro-
babilities of detection (PD) and false alarm (PFA) can be
expressed by :

PD =

∫ +∞

Z

PT (z)dz, PFA =

∫ +∞

Z

PA(z)dz, (10)

The values of integrals are defined by the cumulative den-
sity function of estimated model. We also estimate the sea
surface RCS with a K distribution. We plot the probability
of detection versus probability of false alarm (also known a
Receiver Operation Characteristic (ROC) curve) for the two
hypothesis (Figure 13). The detection performance with the
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FIGURE 13 – Two ROC curves plotted on linear axes.

α-stable distribution is significantly better than that asso-
ciated with the K distribution. Consequently, the impact of
distribution errors on detection performance can be increase
with an inappropriate model of estimation.

5 Conclusion
In this paper, we propose a comparative statistical study
of the sea surface. The sea surface RCS probability den-
sity function is characterized by heavy-tails and asym-
metry. Three models of estimation are compared with a
Kolmogorov-Smirnov test : Weibull, K, and α-stable dis-
tributions. The Kolmogorov-Smirnov test shows that the α-
stable distribution gives the best fit compared to the Weibull
distribution and the K-distribution. The performance of de-
tection with the α-stable is better than associated with the
K distribution, assuming data are modeled by an α-stable
distribution.
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