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BELIEF FUNCTIONS INDUCED BY A MULTIMODAL PROBABILITY
DENSITY FUNCTIONS, AN APPLICATION TO THE SEARCH AND

RESCUE PROBLEM

P.-E. DORÉ, A. MARTIN 1 , I. ABI-ZEID2 , A.-L. JOUSSELME AND

P. MAUPIN 3

Abstract. In this paper, we propose a new method to generate a continuous
belief functions from a multimodal probability distribution function defined
over a continuous domain. We generalize Smets’ approach in the sense that
focal elements of the resulting continuous belief functioncan be disjoint sets of
the extended real space of dimensionn. We then derive the continuous belief
function from multimodal probability density functions using the least com-
mitment principle. We illustrate the approach on two examples of probability
density functions (unimodal and multimodal). On a case study of Search And
Rescue (SAR), we extend the traditional probabilistic framework of search the-
ory to continuous belief functions theory. We propose a new optimization crite-
rion to allocate the search effort as well as a new rule to update the information
about the lost object location in this latter framework. We finally compare the
allocation of the search effort using this alternative uncertainty representation
to the traditional probabilistic representation.

Mathematics Subject Classification.Continuous belief function, multi-
modal probability density function, consonant belief function, Optimal search,
Search and Rescue (SAR).

1. INTRODUCTION

The theory of belief functions is a powerful formalism to deal with imperfect infor-
mation and has been widely used in many applications such as classification, decision
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making, association. As defined by Dempster [5] and Shafer [20], belief functions are
defined over so-called frames of discernment that are exclusive and exhaustive sets of hy-
potheses . A frame of discernment is a discrete set of unordered elements. The extension
of belief function theory to continuous frames of discernment leads to the definition of
continuous belief functions. The definition of belief functions on real numbers has not
been explored extensively up to this day [14, 18, 25, 27], anda particularly interesting
application is the extension of the probabilistic estimation.

In this paper, we model belief functions following [18,25,27] since this approach pro-
vides an explicit link between belief functions and probability distributions. We adopt a
representation where basic belief assignments (bba) are allocated only to connected (non-
disjoint) sets ofR

n
(space of real numbers of dimensionn). However, when belief func-

tions are issued from multimodal probability distributions, we assign belief functions to
unions of disjoint sets, which therefore requires a formalism to describe a more complex
frame of discernment.

We propose an alternative representation of continuous belief functions to the Smets’
representation [25]. After some theoretical background onbelief function theory in Sec-
tion 2, we present Smets’ approach [25] to continuous belieffunctions in Section 3. In
Section 4, we propose a new representation of continuous belief functions such that focal

elements belong toB
(

R
n
)

, the Borelσ-algebra ofR
n
. We focus on consonant belief

functions, i.e belief functions with nested focal elementsas in [3,18,25]. We illustrate the
approach on two examples of probability density functions,and compare our approach
to the one suggested in [3, 25] by computing the consonant belief function linked to a
Gaussian mixture. We then apply the approach to the Search And Rescue (SAR) prob-
lem [1,11–13] in Section 5.

2. DISCRETE BELIEF FUNCTIONS

Initially, belief functions were defined over a discrete andunordered frame of discernment
Ω, which is a finite set of mutually exclusive elements [5, 20, 21] where2Ω denotes the
power set ofΩ.

2.1. BASIC FUNCTIONS

A basic belief assignment (bba)mΩ is a mapping from2Ω to [0, 1] such that
∑

A⊆Ω

mΩ (A) = 1. A focal element ofmΩ is an elementA of 2Ω which bbamΩ (A) is not

equal to zero. The following functions are defined for eachX ⊆ Ω:

• belief function
belΩ (X) =

∑

A⊆X,A 6=∅

mΩ (A) (1)

• plausibility function

plΩ (X) =
∑

A⊆Ω,A∩X 6=∅

mΩ (A) (2)
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• commonality function

qΩ (X) =
∑

X⊆A

mΩ (A) (3)

• pignistic probability [22]

BetPΩ(X) =
∑

A⊆Ω

|A ∩X |

|A|

mΩ (A)

1−mΩ(∅)
(4)

These functions are used to represent the information transmitted by an agent.bel and
pl can be respectively interpreted as lower and upper bounds onthe probability for a
given event, whileq, is a measure of non specificity. The commonality functionq is often
used for its convenient computational properties. The pignistic probability models the
bet of an evidential source of information and is used for making decision in evidence
theory. To combine the information given by two independentsources of information, the
conjunctive rule of combination is often used. Two bbasmΩ

1 andmΩ
2 combined by the

conjunctive rule, lead tomΩ
1 ∩© 2 defined for allA ⊆ Ω by:

mΩ
1 ∩© 2 (A) =

∑

X∩Y=A

mΩ
1 (X)mΩ

2 (Y ) (5)

which can also be written as:

qΩ1 ∩© 2(A) = qΩ1 (A) · q
Ω
2 (A) (6)

using the commonality function.

2.2. THE LEAST COMMITMENT PRINCIPLE

TheLeast Commitment Principlesuggest the choice of the least committed belief func-
tion. This principle can be applied for instance to several alternative representations of a
piece of information or to find the original belief function from a pignistic distribution.

The least commitment principle relies on an order relation between belief functions in
order to determine if a belief function is more or less committed than another. A possible
partial ordering⊑q over belief functions is based on the commonality function and is
defined by:

(

∀A⊆Ω, qΩ1 (A)≤qΩ2 (A)
)

=⇒
(

mΩ
1⊑qm

Ω
2

)

1 (7)

Hence, the belief functionbelΩ2 is less committed thanbelΩ1 according to the commonality
ordering.

1Note that
(

mΩ
1
⊑q mΩ

2

)

is equivalent to
(

belΩ
1
⊑q bel

Ω
2

)

.
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2.3. THE GENERAL BAYESIAN THEOREM

The classical Bayesian theorem of conditional probabilityhas been extended to the
theory of belief functions as followsthe General Bayesian Theorem (GTB)[23]: Let
mΩ be a bba andh a hypothesis.mΩ [h] (A) is the value of the bbamΩ for A if h is

true. In this case we have
∑

A⊆Ω

mΩ [h] (A) = 1. HencemΩ [h] is the bba obtained after

conditioningmΩ on h. Let T andΩ be two frames of discernment andmT be a bba
defined overT . If we assume thatmT [ω] is known for allω ∈ Ω, then if t∗ ⊆ T is true,
we have according to the GTB:

mΩ [t∗] (A) =
∏

ω∈A

plT [ω] (t∗) ·
∏

ω∈A

(

1− plT [ω] (t∗)
)

(8)

This equality can be deduced from the maximum likelihood principle [24]:

plΩ [t∗] (A) = plT [A] (t∗) (9)

This principle remains valid if the frame of discernment is continuous such as the set of
real numbers and if we consider a finite partition of a real set. However, the resulting belief
functions will be discrete although the frame of discernment is continuous. Therefore,
there is a need for a richer model for defining continuous belief functions, as presented in
the next section.

3. CONTINUOUS BELIEF FUNCTIONS ON REAL NUMBERS

Using the belief function framework in order to model the information on a continuous
frame of discernment is not an easy task. Indeed, as belief functions do not satisfy the
additivity property (i.e. bel (A ∪B) 6= bel (A) + bel (B)− bel (A ∩B)), focal elements
need to be easy to handle. A first attempt at this [25,27] used abasic belief density (bbd)
functionmR

n

, an object equivalent to the probability density function (pdf) in probability
theory. The bbd allocates a density to subsets ofR

n
.

3.1. BASIC BELIEF DENSITY ON REAL NUMBERS

Smets [25] suggests to model continuous belief functions onR by applying mass only
on intervals ofR. He links a bbdmR onR to a pdffT onT = {(x, y) ∈ R

2|x ≤ y} (he
set[x, y] = ∅ if y < x). Hence, he definesmR [x, y] = fT (x, y). By analogy with the
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discrete case in Equations (1), (2) and (3), he obtain:

belR([a, b]) =

∫ x=b

x=a

∫ y=b

y=x

fT (x, y) dy dx (10)

plR([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

fT (x, y) dy dx (11)

qR([a, b]) =

∫ x=a

x=−∞

∫ y=+∞

y=b

fT (x, y) dy dx (12)

We notemR

1 ∩© 2 the bbd resulting from a conjunctive combination ofmR

1 andmR

2 . The

productmR

1 (A) ·m
R

2 (B) is allocated tomR

1 ∩© 2 (A ∩B). For each closed setA of R, we
have:

qR1 ∩© 2(A) = qR1 (A) · q
R

2 (A) (13)

We presented above an introduction to the results obtained by Smets [25]. We can extend
this toR

n
using boxes instead of intervals or using ellipsoids as in Caron’s work [3].

3.2. CONSONANT BBDS

Consonant bbds have been studied in several papers [3, 18, 25]. Focal elements of con-
sonant belief function are nested. For eachA andB, focal elements ofmR

n

, we have
A ⊂ B ⇐⇒ qR

n

(B) < qR
n

(A). Therefore it is quite natural to assign a real numbery to
a focal elementF (y) such thaty < y′ impliesF (y) ⊂ F (y′) for y 6= y′, meaning that
the order on the focal elements reduces to an order overR.

We note that the plausibility function of a consonant bbd is apossibility function.

Indeed we have thatplR
n

(A) = max
x∈A

(

plR
n

(x)
)

.

3.3. LEAST COMMITTED BBD INDUCED BY A UNIMODAL PDF

To each bbdmR
n

corresponds a pignistic pdfBetf and a pignistic probabilityBetP .
For each interval[a, b] of R, we have [25]:

BetP ([a, b]) =

∫ x=∞

x=−∞

∫ y=∞

y=x

min(y, b)−max(x, a)

y − x
Betf([x, y]) dy dx (14)

The hypothesis is thatBetP has been obtained by an underlying belief function and the
problem becomes one of identifying this belief function. However, since there no one-to-
one correspondence betweenbel andBetP many solutions exist. To this end, the least
committment principle can then be applied as suggested in [25] where the corresponding
optimization criterion is the maximization of commonalityordering (Eq. (7)). Smets [25]
proved that in this case, the least committed bdd for the commonality ordering (q-LC bbd)
associated withBetf onR whose graph is “bell-shaped” (ie. unimodal) is consonant.
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Let BIso(BetP ) denote the set of bbds whose pignistic probability is equal to BetP ,
i.e. the set ofisopignisticbbds. For each interval[a, b] of R we have:

mR([a, b]) = (γ (b)− b)
dBetf (b)

db
δ (a− γ (b)) (15)

with b in [η,∞] andγ (b) in [−∞, η] such thatBetf (b) = Betf (γ (b)), η being the
mode ofBetf . The focal elements of this belief function are theα-cuts2 of Betf . In [3],
Caronet al. provide the expression of theq-LC bbd associated with the Gaussian pdf of
R

n. They prove that its focal elements are the confidence sets ofthe associated Gaussian
pdf.

4. CREDAL MEASURE AND INDEX FUNCTION

Both the approaches of Smets and Caron et al. described in theprevious section are
based on the description of focal elements from a continuousfunction. However, they
only take into account the frames of discernment built with connected (non-disjoint) sets
subsets? ofR

n
. One drawback of these approaches is that theα-cuts of a multimodal

function cannot be modeled, as they are not connected sets bydefinition (cf. example 4.6
in Section 4.6). If we accept as a focal set any element ofB(Rn), the Borelσ-algebra, we
cannot compute the consonant belief function linked to a multimodal pdf.

We propose here to explicitly introduce an index function aiming at describing the
focal elements of a continuous belief function [9].

4.1. BASICS

Our aim is to build a belief function overR
n
, sayµB(Rn), which set of focal elements is

F
(

µB(Rn)
)

. Let f I be an onto mappingindex functionfor a set of real numbersI called

theindex space, such that all the focal elements of a belief function are described usingI:

f I : I ∈ B
(

R
l
)

−→ F
(

µB(Rn)
)

y 7−→ f I(y)
(16)

wherel is the dimension of the index spaceI. We can considerµB(Rn) as a positive

measure on a measurable space(I,B(I)) that satisfies the condition
∫

I

dµB(Rn)(y) ≤ 1.

If for eachA ∈ B
(

R
n
)

, the following sets belong toB(I),

F⊆A = {y ∈ I|f I(y) ⊆ A} (17)

F∩A = {y ∈ I|
(

f I(y) ∩ A
)

6= ∅} (18)

F⊇A = {y ∈ I|A ⊆ f I(y)} (19)

2Theα-cuts of a functionf from R
n

to R+ are the sets{y ∈ R
n

|f(y) ≥ α}.
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we are able to compute the belief functions usingf I . We call the measurable space
(

I,B(I) , µB(Rn)
)

credal spaceand the corresponding positive measureµB(Rn), credal
measure.

We define for allA ∈ B
(

R
n
)

:

belB(R
n)(A) =

∫

F⊆A

dµB(Rn)(y) (20)

plB(R
n)(A) =

∫

F∩A

dµB(Rn)(y) (21)

qB(R
n)(A) =

∫

F⊇A

dµB(Rn)(y) (22)

We note thatl, the dimension ofI, does not depend onn, the dimension of the frame of

discernment. As an example, Smets suggests in [25] to use subsets ofR
2

to describe focal
elements of a belief onR while Caronand al. in [3] use an index space of dimension 1 to
describe the focal elements of a Gaussian belief function onR

n
.

4.2. VARIABLE SUBSTITUTION

Integration by substitution is a method to find integrals. This important tool can be
used in the theory of belief functions.

Theorem 4.1. Let f I1 andf I2 be two index functions associated with two credal mea-

suresµ
B(Rn)
1 andµ

B(Rn)
2 . Letϕ be a one-to-one mapping such thatϕ (y1) = y2 implies

f I1 (y1) = f I2 (y2). These credal measures are equal if:

dµ
B(Rn)
1 (y1) = |det (ϕ′ (y1)) | dµ

B(Rn)
2 (ϕ (y1)) (23)

This means that ifH1 ⊂ I1 andH2 ⊂ I2 are two elements of a Borelσ-algebra such

thatϕ (H1) = H2 andϕ−1 (H2) = H1 imply
∫

H1

dµ
B(Rn)
1 (y1) =

∫

H2

dµ
B(Rn)
2 (y2), then

the two belief functions associated with the credal measures are the same.

4.3. CONJUNCTIVE COMBINATION RULE

The conjunctive combination rule is given by the following theorem:

Theorem 4.2. Letµ
B(Rn)
1 andµ

B(Rn)
2 be two credal measures. The credal measureµ

B(Rn)
1 ∩© 2

resulting from the conjunctive combination ofµ
B(Rn)
1 andµ

B(Rn)
2 satisfies:

q
B(Rn)
1 ∩© 2 (A) = q

B(Rn)
1 (A) · q

B(Rn)
2 (A) (24)
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Proof. LetA be inB
(

R
n
)

. We have:

q
B(Rn)
1 (A) · q

B(Rn)
2 (A) =

∫

F 1

⊇A

dµ
B(Rn)
1 (y1) ·

∫

F 2

⊇A

dµ
B(Rn)
2 (y2) (25)

According to Fubini’s theorem, we have:

q
B(Rn)
1 (A) · q

B(Rn)
2 (A) =

∫

F 1

⊇A

∫

F2⊇A

dµ
B(Rn)
1 (y1) dµ

B(Rn)
2 (y2)

=

∫

F 1

⊇A

∫

F2⊇A

d

(

µ
B(Rn)
1 ⊗ µ

B(Rn)
2

)

(y1, y2)
(26)

Let f I1 ∩© 2 be a mapping such that:

f I1 ∩© 2 : I1 ∩© 2 = I1 × I2 −→ F

(

µ
B(Rn)
1 ∩© 2

)

y = (y1, y2) 7−→ f I1(y1) ∩ f I2(y2)
(27)

We have:
F 1 ∩© 2
⊆A =

(

F 1
⊆A × I2

)

∪
(

I1 × F 2
⊆A

)

(28)

F 1 ∩© 2
∩A = F 1

∩A × F 2
∩A (29)

F 1 ∩© 2
⊇A = F 1

⊇A × F 2
⊇A (30)

These sets belong to aσ-algebra, sof I1 ∩© 2 is an index function. Therefore we can build

a credal measureµ
B(Rn)
1 ∩© 2 as:

µ
B(Rn)
1 ∩© 2 = µ

B(Rn)
1 ⊗ µ

B(Rn)
2 (31)

Hence:

q
B(Rn)
1 ∩© 2 (A)=

∫

F
1 ∩© 2

⊇A

dµ
B(Rn)
1 ∩© 2 (y) (32)

We obtain:

q
B(Rn)
1 ∩© 2 (A) = q

B(Rn)
1 (A) · q

B(Rn)
2 (A) (33)

�

4.4. CONSONANT CREDAL MEASURES

Consonant credal measures are a particular case of credal measures,i.e. credal measures
whose index functionsf I

cs are bijections such that:

f I
cs : I ⊂ R

+
−→ F

(

µB(Rn)
)

y 7−→ f I
cs(y)

and y2 < y1 ⇐⇒ f I
cs(y1) ⊂ f I

cs(y2) , y1, y2 ∈ R
+

(34)
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f I
cs can then be used to rewrite Equations (20) to (22). For example, if the index space is

a closed interval ofR, i.e. I=[0, ymax], we have:

belB(R
n)(A) =

∫ ymax

y1

dµB(Rn)(y) with y1 being the smallest element ofF⊆A(35)

plB(R
n)(A) =

∫ y2

0

dµB(Rn)(y) with y2 being the biggest element inF∩A (36)

qB(R
n)(A) =

∫ y3

0

dµB(Rn)(y) with y3 being the biggest element inF⊇A (37)

The conjunctive combination of two consonant credal measures is not consonant, which
may be problem. A solution is to replace the credal measure bythe isopignistic consonant
credal measure.

4.5. CONSONANT CREDAL MEASURE INDUCED BY A MULTIMODAL PDF

As stated previously, the approaches of Smets and Caronet al. cannot deal with mul-
timodal pdfs as the focal elements need to be connected, which is not the case if they
are obtained byα-cuts of a multimodal pdf. We apply here our approach based onthe
index function and show that we can represent consonant credal measures induced by a
multimodal pdf.

The pignistic transformation in the case of a credal measureis written for eachA ∈

B
(

R
n
)

:

BetP (A) =

∫

F∩A

λ
(

A ∩ f I(y)
)

λ (f I(y))
dµB(Rn)(y) (38)

In this caseλ (B) is the Lebesgue’s measure of the hypervolumeB, element ofB
(

R
n
)

(we set0/0 = 1). LetBetf be a continuous pdf onR
n
. We will show that theα-cut of

Betf , f I
cs(α), define a consonant credal measureµB(Rn) associated withBetf .

Proposition 4.3. LetBetf be a continuous pdf. Among the belief functions ofBIso(BetP ),
one has as focal elements theα-cuts ofBetf and as consonant credal measure the mea-

sureµB(Rn) such that:

dµB(Rn) (α) = λ
(

f I
cs(α)

)

dλ (α) (39)

Proof. Theα-cuts ofg, a continuous function fromR
n

toR
+ are:

f I
cs(α) = {x ∈ Rn|g (x) ≥ α} (40)

F cs
⊆A is an element of the Borel algebra. Indeed:

F cs
⊆A 6= ∅ ⇒ ∃αinf = inf

{

α ∈ I|f I
cs(α) ∩ A 6= ∅

}

⇒ F cs
⊆A = |αinf , αmax]

(41)



10 TITLE WILL BE SET BY THE PUBLISHER

Using a similar argument, we can prove thatF cs
⊇A andF cs

∩A are elements of the Borel
algebra. Hence, we can define an index function usingBetf :

f I
cs : I = [0, αmax] −→

{

f I
cs(α) |α ∈ I

}

α 7−→ f I
cs(α)

(42)

As the index functionf I
cs does not satisfy the relation given in (34), we need to invert

the upper and lower bounds of each integral used to compute the belief, plausibility and
commonality functions.

We will use two different expressions ofBetP
(

f I
cs (α)

)

to compute the density of the
credal measure. Using the pignistic transformation, we have:

BetP
(

f I
cs (α)

)

=

∫ 0

αmax

λ
(

f I
cs (α) ∩ f I

cs(y)
)

λ (f I
cs(y))

dµB(Rn)(y) (43)

Moreover, letν be the measure such that:

λ
(

f I
cs(α)

)

=

∫ α

αmax

dν (y) (44)

Then,

BetP
(

f I
cs(α)

)

=

∫ α

αmax

ydν (y) (45)

By differentiating these two expressions, we have:

dν (α)

∫ α

αmax

1

λ (f I
cs(y))

dµB(Rn)(y) = αdν (α) (46)

Hence:

α =

∫ α

αmax

1

λ (f I
cs(y))

dµB(Rn)(y) (47)

By differentiating, we have:

dµB(Rn) (α) = λ
(

f I
cs(α)

)

dλ (α) (48)

�

Proposition 4.3 shows that we can build a consonant credal measure for any continuous
pdf, not only for simple modal distributions. Therefore, this result extends the existing
approaches.

Theorem 4.4. Among the set of belief functionsBIso(BetP ), the belief function defined
by Equation(39) is the least committed one for the commonality ordering.

Proof. If
(

f I , µB(Rn)
)

∈ BIso(BetP ), we have by construction:

pl
(

R
n
r f I(α)

)

− α · λ
(

f I(α)
)

≤ betP
(

R
n
r f I(α)

)

(49)
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The credal measure defined by proposition 4.3 leads us to use aplausibility function
which is equal to the upper bound of this inequality. We deduce that this is the least
committed one for the plausibility ordering. As this belieffunction is consonant, it is the
least committed one for the commonality ordering. �

We now can build the least committed belief function ofBIso(BetP ) when the asso-
ciated probability density function is continuous. For discrete frames of discernment or in
some particular cases of continuous belief functions, thiskind of result has already been
obtained [25].

4.6. EXAMPLES

We illustrate our results on two special cases, (1) a simple Gaussian pdf and (2) a mixture
of Gaussian pdfs, and build the corresponding consonant credal measures.

Example 4.5(Gaussian pdf). LetBetf be the pdf of a Gaussian distribution. We define
Betf−1 as the bijective inverse function ofBetf restrained toR+. According to Theorem
4.4,Betf−1 induces a credal measure such that:

dµB(Rn) (α) = λ
(

f I
cs (α)

)

dλ (α) = 2Betf−1 (α) dλ (α) (50)

As α = Betf (x), we have:

dλ (α) = Betf ′ (x) dλ (x) = xBetf (x) dλ (x) (51)

Hence, according to Theorem 4.1, the credal measureµ̃ defined as:

dµ̃B(Rn) (x) = 2x2Betf (x) dλ (x) (52)

and the associated index function such thatf(x) = [−x, x] describe the same belief

functionµB(Rn). This is the result given by Smets in [25].

Theorem 4.1 and Proposition 4.3 can thus be used to build a consonant credal measure
associated with a Gaussian pdf. Unfortunately, the analytic expression ofBetP ◦ f I

cs

andλ ◦ f I
cs are not always trivial and an alternative solution in this case is to compute

a numerical approximation ofλ (fcs (α)). In the next example, we will illustrate this
approach and compute the numerical approximation of the credal measure induced by a
Gaussian mixture. The results will be then compared with those obtained in [3].

Example 4.6 (Gaussian mixture). In [3], Caronet al. give an expression of a bbd
induced by a Gaussian pdf onR

n
. They build a bbd induced by a Gaussian mixturef =

∑

i βifi, such that the plausibility satisfiespl =
∑

i βipli. The resulting belief function
is isopignistic tof . However, its focal elements are not theα-cuts off but rather those of
fi. Thus, this method does not build the consonant belief function induced byf . Hence
we do not obtain the least committed isopignistic belief function induced byf .

Let us consider the Gaussian mixture plotted in Figure 1. Thenumerical approxima-
tions ofBetP ◦ f I

cs andλ ◦ f I
cs are plotted in Figure 2. As expected, the plausibility
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FIGURE 1. Gaussian mixture.

FIGURE 2. Study ofα-cuts.

obtained with proposition 4.3 is clearly higher than the oneobtained by the method de-
scribed in [3] and its shape is clearly different(cf. Figure 3). We conclude that in pattern
recognition application, the method choosen to generate the plausibility function used
by the generalized Bayesian theorem [3, 18] will have an impact on the results. In [8],
the authors show that according the method used to generate belief functions, the results
of classification are not the same and that the method following the least commitment
principle is the more cautious one.
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FIGURE 3. Comparison of plausibility functions.

5. OPTIMAL SEARCH THEORY WITH BELIEF FUNCTIONS

In a Search And Rescue (SAR) problem, algorithms are developed which aim at pro-
viding solutions to optimally allocate the search effort inorder to maximize the chances
of finding a lost object. The theory of probability is the traditional theoretical framework
for modeling uncertainty. An approach using discrete belief functions has been devel-
oped in [7]. Due to its computational burden, this approach should be restricted to small
environments with a restricted number of cells. In this paper, we suggest an alternative
modeling approach based on continuous belief functions. After some background on the
classical search theory, we will apply the approach developed in Section 4 to the search
and rescue problem. The objective is to demonstrate the interest of using continuous
belief functions to model and solve a SAR problem.

5.1. CLASSICAL APPROACH OF SEARCH THEORY

Let R be a search area. IfR is continuous, the distribution of the location of a search
object on a search space can be represented by a continuous pdf fl defined by [29]:

∫

x∈R

fl (x) dx = β (53)

whereβ is a real number between0 and1. A β value lower than1 corresponds to a belief
that the search object is outside the search area with a probability of 1− β. If the search
area is discrete, we have:

∑

c∈R

POC (c) = β (54)

wherePOC (c), is the probability that the search object is in the cellc (Probability of
Containment).



14 TITLE WILL BE SET BY THE PUBLISHER

Among the several ways to initialize this location probability distribution [1], one of
them consists in defining a Gaussian function centered on thelast known point (LKP).
Some methods have been proposed to generate complex probability of containment dis-
tributions, which use severalscenarii to define possibility areas [19]. The conditional
probability of detecting (POD) the search object provided that it is in a given cellc
(POD (c)) depends on several parameters such as the environment, theamount of search
effort, the kind of search object and the type of sensors. To characterize the ability of a
sensor to detect a target, we use the lateral range functionα̂ (r) [29]. It corresponds to
the instantaneous probability that an object, located at a distancer perpendicular to the
trajectory of the sensor, will be detected (cf. Figure 4). The integration of this function
over the distancer defines the sweep width:

W = 2

∫ ∞

0

α̂ (r) dr (55)

In the discrete case, we consider that the sweep width is homogeneous over a given grid
cell (W (c)).

r

W

FIGURE 4. Area swept by the sensor.

A classical lateral range function iŝα [29]:

α̂ (r) =

{

1 for 0 ≤ r ≤ d
0 for r > d

(56)

with W = 2d (cf. Figure 4). When a sensor can be described with this law, we call it
a definite-range law sensor. There are several ways to measure the search effort [29]. It
can be defined by a trajectory length, the time spent in an area, the cost of a mission, etc.
In general, the effort is defined as the length of the path followed by the sensor. Letz be
this length,V be the speed of the sensor, thenz = V · T with T the time spent in an area.
The product ofz byW gives an idea of the surface covered by the sensor. Let the sensor
follow a definite range law (cf. equation (56)), we can useW instead of̂α (r) to compute
thePOD defined by the exponential functionb as follows:

b (z) = 1− exp (−zW/A) (57)
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The exponential detection function assumes a random searchalong the path of the sensor.
Following an unsuccessful search mission, thePOC is usually updated based on the

Bayes’ rule. Letn denote the discrete time index,c the cell number, we then have:

POCn (c) =
POCn−1 (c) · (1− PODn (c))

1− POSn

(58)

wherePOS is theProbability of Successdefined in Equation (59). The resultingPOCn

is not necessarily normalized. In this case, instead of redistributing thePOC on the whole
search area, we assume that the search object is outside the search area. This results in a
lowerβ value.

5.1.1. Search planning

To optimally plan a mission, the available effortΞ must be distributed over the search
area in a way that maximizes a performance criterion. Often [1], we try to maximize the
probability of finding the search object (POS). For one step of planning, we maximize
(in this equation, we assume continuous space):

POS =

∫

x∈R

fl (x) b (ξ (x)) dx

with Ξ =

∫

x∈R

ξ (x) dx
(59)

whereξ (x) is the amount of effort applied onx. Several methods have been proposed to
distribute the effort over the search area, depending on thefixed constraints [28]. If we
assume that the effort is continuous and infinitely divisible, and that the search object is
stationary, de Guenin [4] proved that for a given amount of effort, thePOS is maximized
if for all x of R we have:

fl (x) b
′ (ξ (x)) = λ (60)

whereb′ is the derivative inξ of b andλ is a constant. Therefore, for a fixedλ, by inverting
b′, we can find the allocation ofξλ maximizing thePOS on the search area for a global
amount of fixed effort. Then we haveΞλ =

∫

x∈R
ξλ (x) dx. The optimization problem is

now transformed. Our aim is to find theλ which verifiesΞλ = Ξ.
There are many extensions to this optimal search problem, asa function of the type of

search objects (moving targets, ...), the type of sensors (detection law, false alarm rate, ...)
and the problem constraints [2,28].

5.2. BELIEF FUNCTION APPROACH TO THE SEARCH PROBLEM

To model the optimal search problem within the theory of belief functions, we use the
distributions of probability previously defined. Hence, wehave to consider two frames

of discernment:R, a subset ofR
2
, corresponds to the continuous search area andD =

{

d, d
}

, corresponds to the events “detection” or “no detection”. To describe the location
of the lost object, we useµR

POC , a credal measure. It can be the one related to the least
committed belief function induced by the probability of containment. We denote the set
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of the focal elements of this belief function byPε = {Πε, theε-cuts offl}. Moreover,
we consider that the effort is split on a partition ofR, Pi = {Πi, i ≤ n ∈ N}. Hence,
the probability to detect a lost object onΠ given that the object is there and given the

effort allocated on the search area isPOD(Π) =
∑

Πi∩Π

(

|Πi ∩ Π|

|Π|
POD (Πi)

)

. Using

the least commitment principle with the commonality ordering, we obtainµD
POD [Π], the

belief function induced byPOD(Π), describes our belief in the detection event3:

µD
POD [Π] (A) =







min (2 · POD(Π), 2 (1− POD(Π))) if A = D
max (0, 2 · POD(Π) − 1) if A = d

max (0, 1− 2 · POD(Π)) if A = d
(61)

To model the chance of finding the object after a search mission, we consider the
following belief function generated by the two previous kinds of belief functions:

µD
[

µR
POC , µ

D
POD [Π]

]

(A) =

∫

F⊂R

µD
POD [Πε] (A) dµR

POC (ε) (62)

Hence, the objective of the search plan is to split the effortonPi in order to maximize the
pignistic probability of finding the lost object. This optimization problem is the same as
the one traditionally defined in probabilistic case, and hence we can use the de Guenin’s
algorithm [4] to find a solution.

After a search campaign, we can updatemΠ
POC . The first thing is to model the infor-

mation transmitted by a sensor when the mission completes without detection. The aim
is to be able to defineplRPOD

[

d
]

(Π). In order to have a consonant belief function, we
define:

plRPOD

[

d
]

(Π) = max
x∈Π

plRPOD

[

d
]

(x) = max
Πi∩Π 6=∅

plRPOD

[

d
]

(Πi) (63)

According to the maximum likelihood principle, we have for all Πi in the search area:

plRPOD

[

d
]

(Πi) = plDPOD [Πi]
(

d
)

(64)

To update the belief on the search object’s location, we combine the belief functions with
the conjunctive rule:

qΠPOC′

[

d, µPOC

]

(Π) = qDPOD

[

d
]

(Π) · qRPOC (Π) (65)

We note that when thePOD is smaller than0.5, the plausibility sent by the sensor is
equal to1 with no impact on the update of the commonality.

Example 5.1(The POC is a mixture of Gaussian). We assume that the probability of
containment is represented by a mixture of two Gaussian functions corresponding to two
possible LKP. Based on the results presented by Caronet al. in [3], we can build a bbd
associated with thePOC. We build also the least committed belief function induced by

3For the sake of simplicity, we set for ally in I, the index space, thatµX [X] (y) = µX [X] (f(y)).
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thePOC (cf. Figures 5). A first problem occurs with the Caron’s method. Infact, some
locations for the lost object are more probable than other ones, however this ordering is
not keept with the plausibility function induced by Caron’smethod. This does not happen
when we use the least committed one.
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(a) Probability of containment.
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(b) Plausibility of containment (Caron’s method).
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FIGURE 5. Location of the lost object.

We assume that the sweep width is the same for all the search areas. We decide to
use the detection model describe by the equation (57). Hence, we can compute for the
probabilistic and the belief functions approaches the optimal allocations of effort in order
to maximize the chance of finding the lost object (cf. figures 6). We remark that in the case
of Caron’s method, the effort is focused on a place where the lost object does not seem to
be. When we use the least committed belief functions, the effort is allocated on a larger
area(cf. figures 6). It is because we consider that the source of information is subjective.
Hence, it is weakened by representing likelihoods on sets instead of singletons.

We then update the information about the location of the lostobject in the two frame-
works (cf. figures 7). We observe that the area where the information about the location
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belief functions.

FIGURE 6. Allocation of effort.

of the lost object is updated is smaller in the case of the plausibility. It is because in our
approach with the belief functions, we do not update the information about the location if
the probability of detection is smaller than0.5.

CONCLUSIONS

In this paper, we have extended the approach proposed in [25,27] to describe complex
focal elements. With this extended model, it is possible to induce a consonant belief
function from a multimodal continuous pdf. Such a tool allows us to make the same
operations with the framework of belief functions and the framework of probabilities.
One example is the study of a SAR case. We remark that based on the belief functions
approach, we have a powerful way to merge information from several sources on the
location of the search object. This may be used in the contextof searches where several
drones are used (for example [32]). Recently, some studies [30, 31] have addressed the
performance measures of sensors in a SAR context. We could take into account these
results into the framework belief functions.
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FIGURE 7. Location of the lost object.

REFERENCES

[1] Abi-Zeid, I. and Frost, J. R. (2004), SARPlan: A decisionsupport system for Canadian Search and Rescue
Operations,European Journal of Operational Research, 162(3),630–653.

[2] Brown, S. S. (1980), Optimal Search for a moving target indiscrete time and space,Operations Research,
28(6), 1275–1289.

[3] F. Caron, B. Ristic, E. Duflos, and P. Vanheeghe. Least committed basic belief density induced by a multi-
variate Gaussian: Formulation with applications.International Journal of Approximate Reasoning, 48(2) :
419–436, 2008.

[4] de Guenin, J. (1961), Optimum Distribution of Effort: anExtension of the Koopman Basic Theory,Opera-
tions Research, 9(1), 1–7.

[5] A.P. Dempster. Upper and lower probabilities induced bya multivalued mapping.Annals of Mathematical
Statistics, 38(2) : 325–339, 1967.

[6] T. Denoeux. Extending stochastic ordering to belief functions on the real line.Information Sciences, 179 :
1362–1376, 2009.
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