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Abstract – In this paper, we generalize the approach of
Ph. Smets on the continuous belief functions. Instead of
having only connected sets as focal set, we put basic be-
lief assignement on elements of the Borel sigma-algebra of
R

n
(the extended real space set of dimensionn). We de-

cide to analyse belief functions with an index function which
describes all the focal sets. We focus on the consonant be-
lief functions and we show some of their properties. They
are useful to define belief function associated to multimodal
probability density function. We apply the obtained results
to compute a consonant belief function linked to a Gaussian
mixture.

Keywords: Continuous belief function, multimodal proba-
bility density function, consonant belief function.

1 Introduction
The theory of belief functions is a powerful formalism to
describe the imperfections of the data given by an infor-
mation’s source. They are widely used in classification to
merge the decisions comming from several classifiers. This
classifiers can have in input sensors’ data. They use the esti-
mation of continuous parameters to take a decision. It could
be a good idea to estimate these parameters with the the-
ory of belief functions. Recently, some works deal with the
question of representation of belief functions on real num-
bers. Several approaches exist [12, 5, 6, 10]. In this paper,
we will focus on the way that belief functions have been
modeled in [12, 6, 10]. It allows us to link belief functions
with probability. However, in these works, basic belief as-
signement are allocated only on connected sets ofR

n
(the

extended real space set of dimensionn). This choice has
been done to work with user-friendly objects. Unfortunately,
when we manipulate belief functions linked to multimodal
probability, it seems better to assign beliefs on unions of dis-
jointed sets. Thus we need a formalism to describe a more
complex frame of discernment.
In the following, after a brief reminder of the result about the
belief functions, we will present the Smets’approach [10] of
continuous belief functions (cf. section 3). Then, we will

propose a new way to represent belief function in order that

focal elements belong toB
(

R
n
)

, the Borel sigma-algebra

of R
n

(cf. section 4). To work with user-friendly object, we
will focus, as it has been done in [10, 1, 6], with consonant
belief functions. We will use them to model the information
transmitted by multimodal probability density function. To
finish, using the result in [1], we will compare this new ap-
proach with the one suggested in [10, 1] by computing the
consonant belief function linked to a Gaussian mixture (cf.
section 5).

2 Discrete belief functions onR
n

In a classical way [2, 7, 8], a frame of discernmentΩ is a
finite set of disjointed elements. The set built with all the
subset ofΩ is noted2Ω. The belief functionsmΩ allow us
to model information on all the elements of2Ω. A focal
element is an elementA of 2Ω whose the basic belief asign-
mentmΩ (A) is not equal to zero. A basic belief assignment

function verifies the condition
∑

A⊆Ω

mΩ (A) = 1. It is linked

to the following belief functions define for eachX ⊆ Ω by:

• belief function

belΩ (X) =
∑

A⊆X,A 6=∅

mΩ (A) (1)

• plausibility function

plΩ (X) =
∑

A⊆Ω,A∩X 6=∅

mΩ (A) (2)

• communality function

qΩ (X) =
∑

X⊆A

mΩ (A) (3)

• pignistic probability [9]

BetPΩ(X) =
∑

A⊆Ω,A∩X 6=∅

|A ∩ X |

|A|

mΩ (A)

1 − mΩ(∅)
(4)



By combiningmΩ
1 and mΩ

2 according to the conjonctive
rule, we havemΩ

1 ∩© 2 such as for allA ⊆ Ω:

mΩ
1 ∩© 2 (A) =

∑

X∩Y =A

mΩ
1 (X)mΩ

2 (Y ) (5)

An other way to write this rule is to consider the communa-
lity:

qΩ
1 ∩© 2(A) = qΩ

1 (A) · qΩ
2 (A) (6)

Thanks to this definition of belief functions, we can model
a discrete belief onR

n
with a basic belief assignmentmΘ.

The frame of discernmentΘ is made of a countable set of
disjointed elements ofB

(

R
n
)

. The set of focal elements of

mΘ (i.e. the subsetA of 2Θ such asmΘ(A) 6= 0), which is
writtenF

(

mΘ
)

, is a countable set of elements of2Θ. These
elements can be writtenFi, with i ∈ N. mΘ verify the con-

dition
∑

i mΘ(Fi) = 1. We can define for allA in B
(

R
n
)

the following belief functions:

belB(R
n)(A) =

∑

Fi⊆A

mΘ(Fi) (7)

plB(R
n)(A) =

∑

Fi∩A 6=∅

mΘ(Fi) (8)

qB(R
n)(A) =

∑

A⊆Fi

mΘ(Fi) (9)

BetPB(Rn)(A) =
∑

A∩Fi

|A ∩ Fi|

|A|

mΘ (A)

1 − mΘ(∅)
(10)

These belief functions are the same that those describe pre-
viously. All the usual properties on belief functions can
be applied on them. However, these functions are discrete.
Hence they are not well fit to estimate a continuous parame-
ter. Modeling belief functions with a continuous function is
a way to resolve the problem.

3 Continuous belief functions with
connected focal elements inR

n

In order to model information given by a continuous belief
function, we can use a basic belief density functionmR

n

(cf. [12, 10]), as in the theory of of probabilities we use a
probability density function (pdf). The basic belief density
functions (bbd) allocate a density to sets ofR

n
. Unfortu-

nately, a belief function does not verify the additivity pro-
perty (i.e. bel (A ∪ B) 6= bel (A) + bel (B)− bel (A ∩ B)).
To use continuous belief functions, we need to work with be-
lief functions whose the focal elements are easily described.

3.1 Connected set ofR
n

Ph. Smets [10] suggests to model continuous belief func-
tions onR by applying mass only on intervals ofR. He links
a bbdmR onR, to a pdffT on T = {(x, y) ∈ R

2|x ≤ y}

(we set[x, y] = ∅ si y < x). By analogy with the discrete
belief functions, we obtain:

belR([a, b]) =

∫ x=b

x=a

∫ y=b

y=x

fT (x, y) dy dx (11)

plR([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

fT (x, y) dy dx (12)

qR([a, b]) =

∫ x=a

x=−∞

∫ y=+∞

y=b

fT (x, y) dy dx (13)

mR
1 ∩© 2 is the bbd resulting from conjonctive combination of

mR
1 andmR

2 . The productmR
1 (A) · mR

2 (B) is allocated to
mR

1 ∩© 2 (A ∩ B). For each closed setA of R:

qR1 ∩© 2(A) = qR1 (A) · qR2 (A) (14)

This is only an introduction to the results obtain by
Ph. Smets [10]. We can extend this model toR

n
.

3.2 Consonant bbd
The study of consonant bbd is the object of several papers
[6, 10, 1]. The focal elements of this kind of belief function
are nested. For eachA et B, focal elements ofmR

n

, we
haveA ⊂ B ⇐⇒ qR

n

(B) < qR
n

(A). Therefore it is quite

normal to assign an indexy to an elementF (y) ∈ F
(

mR
n
)

such asy < y′ imply F (y) ⊆ F (y′).

3.3 Least Committed bbd induced by uni-
modal pdf

The estimation of a parameter is done thanks to data given
by several sensors. The information comming from sensors
is often modelized by pdf. To merge this information with
the framework of the theory of belief functions, we have to
linked a bbd to a pdf. Ph. Smets introduces in [9] the concept
of pignistic transformation. A bbdmR

n

corresponds to a pdf
Betf and a pignistic probabilityBetP . For each interval
[a, b] in R, we have according to [10]:

BetP ([a, b]) =

∫ x=∞

x=−∞

∫ y=∞

y=x

y∧b − x∨a

y − x
fT ([x, y]) dy dx

(15)
The set of bbd whose pignistic probability is equal toBetP
is writtenBIso(BetP ). The issue is to choose a function in
this set. Several works deal with the problem of the order-
ing of continuous belief functions [10, 3]. Ph. Smets [10]
has choosen the least commitment criteria. The aim is to
choose the belief function committing the least the source.
One optimization criteria can be to maximize the communa-
lity function. We can use the partial ordering:

(

∀A⊆R
n
, qR

n

1 (A)≤qR
n

2 (A)
)

=⇒
(

mR
n

1 ⊑q mR
n

2

)

(16)

Ph. Smets [10] has proven that the Least Committed basic
belief density (LC bbd) linked to a pdf onR whose the graph



is “bell-shaped” is consonant. For each interval[a, b] of R
we have:

mR([a, b]) = (γ (b) − b)
dBetf (b)

db
δ (a − γ (b)) (17)

with ν the mode ofBetf (the axisx = ν is the symetrical
axis of the curve),b in [ν,∞], andγ (b) in [−∞, ν] such as
Betf (b) = Betf (γ (b)). The focal elements of this belief
function are theα-cuts1 of Betf . In [1], F. Caronet al.
have given the expression of the bbd linked to the Gaussian
of Rn. They have proven that their focal elements are the
confidence sets of the linked Gaussian. These approaches
to model continuous belief functions on real numbers are all
fonded on the idea to describe focal elements thanks to a
continuous function. However, they only take into account
the frames of discernment built with connected set ofR

n
.

It raises some problems. One of them is that theα-cuts of
a multimodal function are not connected sets (cf. example
2 in section 5). If our frame of discernment isB(Rn), we
cannot compute the consonant belief function linked to a
multimodal pdf.

4 Continuous belief functions with fo-
cal elements inB

(

R
n)

Using an index to describe the focal elements is handy when
we want to use efficiently the belief functions. In this sec-
tion, we will present an approach of belief functions founded
on the definition of a function describing the set of focal el-
ements.

4.1 Credal measure
We try to model a belief onR

n
, µB(Rn). The set of focal

elements linked to this belief is writtenF
(

µB(Rn)
)

. If we

can define a onto mappingf I named index function such as:

f I : I ∈ B
(

R
l
)

−→ F
(

µB(Rn)
)

y 7−→ f I(y)
(18)

We can considerµB(Rn) as a positive measure on a
measurable space(I,B(I)) which verifies the condition
∫

I

dµB(Rn)(y) ≤ 1. If for eachA ∈ B
(

R
n
)

, the follow-

ing sets belong toB(I):

F⊆A = {y ∈ I|f I(y) ⊆ A} (19)

F∩A = {y ∈ I|
(

f I(y) ∩ A
)

6= ∅} (20)

F⊇A = {y ∈ I|A ⊆ f I(y)} (21)

We name the measurable space
(

I,B(I) , µB(Rn)
)

credal

spaceand the positive measure linkedcredal measure. We

define for allA ∈ B
(

R
n
)

the following belief functions:

1the α-cuts of a functionf from R
n

to R+ are the sets{y ∈
R

n

|f(y) ≥ α}.

belB(R
n)(A) =

∫

F⊆A

dµB(Rn)(y) (22)

plB(R
n)(A) =

∫

F∩A

dµB(Rn)(y) (23)

qB(R
n)(A) =

∫

F⊇A

dµB(Rn)(y) (24)

We note thatl, the dimension ofI (the index space), do not
depend onn, the dimension of the space where we exprime
a belief. To quote an example, in [10], Ph. Smets suggests

to use subsets ofR
2

to describe focal elements of a belief
on R while F. Caronet al. in [1] use an index space of
one dimension to describe the focal elements of a Gaussian
belief function onR

n
.

When several sources of information are available, we can
use the conjonctive rule of combination to merge them. We
prove the theorem:

Theorem 1. Letµ
B(Rn)
1 andµ

B(Rn)
2 be two credal measures.

We obtain after a conjonctive combination the credal mea-

sureµ
B(Rn)
1 ∩© 2 which verifies the equality:

q
B(Rn)
1 ∩© 2 (A) = q

B(Rn)
1 (A) · q

B(Rn)
2 (A) (25)

Proof. Let A be inB
(

R
n
)

. We have:

q
B(Rn)
1 (A)·q

B(Rn)
2 (A) =

∫

F 1

⊇A

dµ
B(Rn)
1 (y1)·

∫

F 2

⊇A

dµ
B(Rn)
2 (y2)

(26)
According to the theorem of Fubini, we have:

q
B(Rn)
1 (A) · q

B(Rn)
2 (A) =

∫

F 1

⊇A

∫

F2⊇A

dµ
B(Rn)
1 (y1) dµ

B(Rn)
2 (y2) =

∫

F 1

⊇A

∫

F2⊇A

d

(

µ
B(Rn)
1 ⊗ µ

B(Rn)
2

)

(y1, y2)

(27)

Let f I1 ∩© 2 be a mapping such as:

f I1 ∩© 2 : I1 ∩© 2 = I1 × I2 −→ F

(

µ
B(Rn)
1 ∩© 2

)

y = (y1, y2) 7−→ f I1(y1) ∩ f I2(y2)
(28)

We have:

F 1 ∩© 2
⊆A =

(

F 1
⊆A × I2

)

∪
(

I1 × F 2
⊆A

)

(29)

F 1 ∩© 2
∩A = F 1

∩A × F 2
∩A (30)

F 1 ∩© 2
⊇A = F 1

⊇A × F 2
⊇A (31)

These sets belong to aσ-algebra, sof I1 ∩© 2 can be seen as
an index function. Therefore we can build a credal measure

µ
B(Rn)
1 ∩© 2 such as:

µ
B(Rn)
1 ∩© 2 = µ

B(Rn)
1 ⊗ µ

B(Rn)
2 (32)



Hence:

q
B(Rn)
1 ∩© 2 (A)=

∫

F
1 ∩© 2

⊇A

dµ
B(Rn)
1 ∩© 2 (y) (33)

We obtain:

q
B(Rn)
1 ∩© 2 (A) = q

B(Rn)
1 (A) · q

B(Rn)
2 (A) (34)

Let f I1 et f I2 be two index functions linked to the credal

measuresµ
B(Rn)
1 etµ

B(Rn)
2 . Let ϕ be an onto mapping from

I1 to I2 such asϕ (y1) = y2 implies f I1 (y1) = f I2 (y2).
Let H1 ⊂ I1 and H2 ⊂ I2 be two elements of Borel
sigma-algebra. Ifϕ (H1) = H2 andϕ−1 (H2) = H1 imply
∫

H1

dµ
B(Rn)
1 (y1) =

∫

H2

dµ
B(Rn)
2 (y2), then the two beliefs

linked to the credal measures are equal.

Theorem 2. Letf I1 etf I2 be two index functions linked two

credal measuresµ
B(Rn)
1 etµ

B(Rn)
2 . Letϕ be a bijection such

asϕ (y1) = y2 impliesf I1 (y1) = f I2 (y2). These credal
measures are equal if:

dµ
B(Rn)
1 (y1) = |det (ϕ′ (y1)) | dµ

B(Rn)
2 (ϕ (y1)) (35)

4.2 Consonant credal measure
The consonant credal measures are a particular case of
credal measure. Indeed their index functionsf I

cs are bijec-
tions such as:

f I
cs : I ⊂ R

+
−→ F

(

µB(Rn)
)

y 7−→ f I
cs(y)

and y2 < y1 ⇐⇒ f I
cs(y1) ⊂ f I

cs(y2)

(36)

Thanks to the index functionf I
cs, we can express the value of

belief function. By example, if the index space is an interval,
i.e. I =[0, ymax], we have:

belB(R
n)(A) =

∫ y1

ymax

dµB(Rn)(y)

with y1 the smallest element ofF⊆A

(37)

plB(R
n)(A) =

∫ 0

y1

dµB(Rn)(y)

with y1 the biggest element inF∩A

(38)

qB(R
n)(B) =

∫ 0

y1

dµB(Rn)(y)

with y1 the biggest element inF⊇A

(39)

We notice that the conjonctive combination of two conso-
nant credal measures is not consonant. It is a problem if
we want to merge a big quantity of information or realize
a dynamic merging. A solution is to substitute the credal
measure by the isopignistic consonant credal measure.

4.3 Consonante credal measure induced by a
multimodal probability density

We model the different sources of information with multi-
modal pdf. To merge these sources using the theory of be-
lief functions, we have to link these probabilities to belief
functions. The pignistic transformation in the case of credal

measure is written for eachA ∈ B
(

R
n
)

:

BetP (A) =

∫

F∩A

λ
(

A ∩ f I(y)
)

λ (f I(y))
dµB(Rn)(y) (40)

We notice in this case thatλ (B) is Lebesgue’s measure of

the hypervolumeB, element ofB
(

R
n
)

(we decide that

0/0 = 1). Let Betf be a continuous pdf onR
n
. We have

Betf
(

R
n
)

=[0, αmax] = I. We obtain the index function

f I
cs such asf I

cs(α) (with α in I) is theα-cut of Betf and

define a consonant credal measureµB(Rn) linked toBetf .

Theorem 3. Let Betf be a continuous pdf. We can asso-

ciate it to µB(Rn), a consonant credal measure whose the
focal element are theα-cuts ofBetf such as:

dµB(Rn) (α) = λ
(

f I
cs(α)

)

dλ (α) (41)

Proof. We will use two different expressions of
BetP

(

f I
cs (α)

)

. Thanks to the pignistic transforma-
tion, we have:

BetP
(

f I
cs (α)

)

=

∫ 0

αmax

λ
(

f I
cs (α) ∩ f I

cs(y)
)

λ (f I
cs(y))

dµB(Rn)(y)

(42)
Let ν be the measure such as:

λ
(

f I
cs(α)

)

=

∫ α

αmax

dν (y) (43)

Then:

BetP
(

f I
cs(α)

)

=

∫ α

αmax

ydν (y) (44)

By differentiating these two expressions, we have:

dν (α)

∫ α

αmax

1

λ (f I
cs(y))

dµB(Rn)(y) = αdν (α) (45)

Hence:

α =

∫ α

αmax

1

λ (f I
cs(y))

dµB(Rn)(y) (46)

By differentiating, we have:

dµB(Rn) (α) = λ
(

f I
cs(α)

)

dλ (α) (47)

We can build a consonant credal measure for each continu-
ous pdf. We will apply this result by building the consonant
credal measure induced by a Gaussian mixture.



5 Applications
To illustrate our results, we will use the previous theoremsto
build the consonant credal measure induced by a continuous
pdf. To begin, we will demonstrate a classic result with con-
tinuous belief functions, the value of the consonante belief
function induced by a Gaussian.

Example 1 (Application to a Gaussian pdf). Let Betf
be the pdf of a standard Gaussian distribution. We define
Betf−1 as the inverse function ofBetf restrained toR+.
It is a bijection. According to the theorem 3, it induces a
credal measure such as:

dµB(Rn) (α) = λ
(

f I
cs (α)

)

dλ (α)
= 2Betf−1 (α) dλ (α)

(48)

As α = Betf (x), we have:

dλ (α) = Betf ′ (x) dλ (x) = xBetf (x) dλ (x) (49)

Hence, according to the theorem 2, the credal measure:

dµ̃B(Rn) (x) = 2x2Betf (x) dλ (x) (50)

describe the same belief asµB(Rn). That is the result given
by Ph. Smets in [10].

We can use theorem 2 and 3 to build a consonante credal
measure linked to a Gaussian pdf. Unfortunately, it is not
always easy to find the analytic expression ofBetP ◦ f I

cs

and ofλ ◦ f I
cs. However, we can compute a numerical ap-

proximation ofλ (fcs (α)). We will compute the numerical
approximation of the credal measure induced by a Gaussian
mixture. The results will be compared with the ones obtain
in [1].

Example 2 (Application to a Gaussian mixture). In [1],
F. Caronet al. give an expression of bbd induced by a Gaus-
sian pdf onR

n
. To build a bbd induced by a Gaussian mix-

turef =
∑

i βifi, they decide to create it in a such way that
the plausibility verifies the equalitypl =

∑

i βipli. Hence
we obtain a belief function which is isopignistic tof . How-
ever, its focal elements are not theα-cuts off but those of
fi. This method does not build the consonant belief function
induced byf . That has an influence on the value taken by
pl. We will work on the Gaussian mixture plotted in figure 1.
The numerical approximations ofBetP ◦f I

cs andλ◦f I
cs are

plotted in figure 2. The obtained plausibility of the belief
function with theorem 3 is clearly bigger than the one ob-
tained thanks to [1] and its shape is different (cf. figure 3).
We can deduce that it implies less commitment on singleton
and if we want to use it to make classification by using the
generalized Bayes theorem, we will obtain a different result.

6 Conclusion
As presented in this paper, we can extend the approach pro-
posed in [10, 12] to describe complex focal elements. With
this extended model, it is possible to induce a consonant be-
lief function from a multimodal continuous pdf. In further

development, it would be interrresting to prove that these
functions are the least committed on singleton for an isopig-
nistic set as it is in [10]. Moreover, the study of the com-
putational cost would be interresting in the perpective of a
practical implementation. In a first time, we can imagine
to use it in Joint Tracking and Classification problems (cf.
[1, 11]). We could also use this approach to develop some
methods to estimate continuous parameters.
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