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Abstract — In this paper, we generalize the approach ofropose a new way to represent belief function in order that

Ph..Smets on the continuous belief functions. Instefidfgea| elements belong tg(ﬁ"), the Borel sigma-algebra
having only connected sets as focal set, we put basic be-_, i . _ .

lief assignement on elements of the Borel sigma-algebra®fit (Cf- section 4). To work with user-friendly object, we
R” (the extended real space set of dimension We de- W|Illfocus, as it has be.en done in [10, 1, 6], Wlth consor)ant
cide to analyse belief functions with an index function Wwhidelief fl_mct|ons. We_ will use them to model .the mformatlon
describes all the focal sets. We focus on the consonant Hg_psmltt_ed by muItlmo_daI probabl_llty density fu_nctlom T
lief functions and we show some of their properties. Th&ish. using the resultin [1], we will compare this new ap-
are useful to define belief function associated to multimodd ©ach with the one suggested in [10, 1] by computing the
probability density function. We apply the obtained resylFONsonant belief function linked to a Gaussian mixtufe (

to compute a consonant belief function linked to a GaussigRction 5)-

mixture. 2 Discrete belief functions onR "

Keywords: Continuous belief function, multimodal proba-n a classical way [2, 7, 8], a frame of discernménis a
bility density function, consonant belief function. finite set of disjointed elements. The set built with all the
subset of is noted2®. The belief functionsn allow us

; to model information on all the elements f. A focal
1 Introduction element is an element of 2 whose the basic belief asign-
The theory of belief functions is a powerful formalism tamentmm® (A) is not equal to zero. A basic belief assignment
describe the imperfections of the data given by an infog;nction verifies the conditior  m® (A) = 1. Itis linked
mation’s source. They are widely used in classification to ica
merge the decisions comming from several classifiers. Thisthe following belief functions define for each C Q by:
classifiers can have in input sensors’ data. They use the esti ) .
mation of continuous parameters to take a decision. It could® Pelief function
be a good idea to estimate these parameters with the the- bel® (X) = Z mS (A) 1)
ory of belief functions. Recently, some works deal with the

. . . . ACX,A#D
question of representation of belief functions on real num-
bers. Several approaches exist [12, 5, 6, 10]. In this paper, pjausibility function
we will focus on the way that belief functions have been
modeled in [12, 6, 10]. It allows us to link belief functions Pl (X) = Z m* (A) (2)
with probability. However, in these works, basic belief as- ACQ,ANX£0
signement are allocated only on connected sef® ofthe
extended real space set of dimensign This choice has e communality function
been done to work with user-friendly objects. Unfortungtel 0 0
when we manipulate belief functions linked to multimodal q (X)= Z m™ (A) 3)
probability, it seems better to assign beliefs on uniondgof d Xca

jointed sets. Thus we need a formalism to describe a mor
complex frame of discernment.

In the following, after a brief reminder of the result abdu t 0 AN X| m2(A)
belief functions, we will present the Smets’approach [10] o BetP(X) = ) A 1= m0)
continuous belief functionsc{. section 3). Then, we will ACQ,ANX#D

% pignistic probability [9]

(4)



By combiningm{® andm$ according to the conjonctive (we set[z,y] = () siy < z). By analogy with the discrete

rule, we haven{’_ , such as for ald C Q: belief functions, we obtain:
_ ~x=b py=b
mPes(A) = > mi(X)mf (V) (5) bel®([a, b]) = / / (2, y)dyde  (11)
XNY=A z=a Jy=zx
An other way to write this rule is to consider the communa- - z=b  py=+oo -
iy: et = [ ey (12
r=—o00J y=max(a,r
070 2(A) = 4’ (4) - 45 (A) (6)

_ Tr=a ry=-400
Thanks to this definition of belief functions, we can model 7% ([a,b]) = / / M (z,y)dydx (13)
a discrete belief ofR " with a basic belief assignment®. e==o00 Jy=b

The frame of discernmertd is made of a countable set of;;,k _ is the bbd resulting from conjonctive combination of

disjointed elements dS(IR ) The set of focal elements Ofmiﬁ andmg. The productm?(A) .mﬁ(B) is allocated to
m® (i.e. the subsetd of 2 such asn®(A) # 0), whichis ;R (4 B). For each closed set of R:

written F(m®), is a countable set of elements2f. These toz
o A ) _ _ _
e!ejments can be writtef;, with i € ]N m verlfy the_cgn ato2(A4) = at'(A) - g3 (A) (14)
dition >°, m®(F;) = 1. We can define for ali in B(]R )
the following belief functions: This is only an introduction to the results obtain by
Ph. Smets [10]. We can extend this modeRi0.
BR") _ o
bel 27 /(4) F;Am (F3) () 3.2 Consonant bbd

The study of consonant bbd is the object of several papers
1BE") (4) — o(F, 8 [6, 10, 1]. The focal elements of this kind of beliejnfunction
b (4) Z m=(F) (8) are nested. For each et B, focal elements ofn® |, we

FinAz0 haveA C B < ¢®" (B) < ¢®" (A). Therefore it is quite
B (4) = S mO(F) (9) normalto assign an indexto an elemenf’(y) € ]—‘(mTRn)
ACF; such ag; < ¢ imply F(y) C F(y').

— ) o)
BetPB®)(4) = Y AN F| 1m (@
—m

A) (10) 3-3 Least Committed bbd induced by uni-
() modal pdf

These belief functions are the same that those describe grB€ estimation of a parameter is done thanks to data given
viously. All the usual properties on belief functions caRY Several sensors. The information comming from sensors
be applied on them. However, these functions are discreéfe0ften modelized by pdf. To merge this information with
Hence they are not well fit to estimate a continuous paranig¢ framework of the theory of belief functions, we have to
ter. Modeling belief functions with a continuous functien i linkeéd abbd to a pdf. Ph. Smetsintroduces in [9] the concept
a way to resolve the problem. of pignistic transformation. A bbek® " corresponds to a pdf

Betf and a pignistic probability3et P. For each interval
3 Continuous belief functions with [@? R, we have according to [10]

im EEC YTYAD — xVa
connected focal elements ifR BetP((a, b]) = / / y £ ([, ]) dy da
y=x

=—00 y—x

In order to model information given by a continuous belief (15)

function, we can use a basic belief densit_y. functmﬁ The set of bbd whose pignistic probability is equaRet P
(cf. [12, 10]), as in the theory of of probabilities we use &\, ritten Z1so( Bet P). The issue is to choose a function in
probability density function (pdf). The basic belief dagsi s set Several works deal with the problem of the order-

functions (bt_)d) aIIoc_ate a density to _setsIR)Uf. U_n_fqrtu- ing of continuous belief functions [10, 3]. Ph. Smets [10]
nately, a belief function does not verify the additivity PfOhas choosen the least commitment criteria. The aim is to
perty (.. bel (AU B) # bel (A) +bel (B) —bel (AN B)).  chogse the belief function committing the least the source.

To use continuous belief functions, we need to work with bes, ¢ o otimization criteria can be to maximize the communa-
lief functions whose the focal elements are easily desdrlbeﬁty function. We can use the partial ordering:

e —n —n —=n =n

3.1 Connected set oR (VACR" ¢F () <dF () = (mF'cyml)  @6)

Ph. Smets [10] suggests to model continuous belief func-

tions onR by applying mass only onintervals B He links  Ph. Smets [10] has proven that the Least Committed basic
a bbdm® onRR, to a pdff? on7 = {(x,y) € R?|z <y} beliefdensity (LC bbd) linked to a pdf dR whose the graph



is “bell-shaped” is consonant. For each interjeab] of R B B
we have: bel™B") (4) = / ) () (22)

Fca

dBetf (b) 3
B O) 50— (1) (7) ) = [ ) 23)

Fra

mF([a, b]) = (v (b) = b)

with v the mode ofBet f (the axisx = v is the symetrical . _
axis of the curve)p in [v, o], and~ (b) in [—o0, ] such as BB (4) = / dpBE®) () (24)
Betf (b) = Betf (v (b)). The focal elements of this belief Foa

function are then-cuts' of Betf. In [1], F. Caronet al. e note that, the dimension of (the index space), do not
have given the expression of the bbd linked to the Gaussigépend om, the dimension of the space where we exprime
of R™. They have proven that their focal elements are thgbelief. To quote an example, in [10], Ph. Smets suggests

confidence sets of the linked Gaussian. These approacegse subsets dk- to describe focal elements of a belief
to model continuous belief functions on real numbers are gp, R while F. Caronet al. in [1] use an index space of

fonded on the idea to describe focal elements thanks tQ,& gimension to describe the focal elements of a Gaussian
continuous function. However, they only take into accouRljief function onR”*

. . . 1, .
the frames of discernment built with connected seR0f  \yhen several sources of information are available, we can

It raises some problems. One of them is thatdheuts of ;56 the conjonctive rule of combination to merge them. We
a multimodal function are not connected satf gxample prove the theorem:

2 in section 5). If our frame of discernment/HR™), we . .
cannot compute the consonant belief function linked t0heorem 1. Letﬂf(]R ) anduf(m ) be two credal measures.

multimodal pdf. We obtain after a conjonctive combination the credal mea-
. . . . BR") - o
4 Continuous belief functions with fo- Sure# o> which verifies the equality:
. =N —n —=n =mn
cal elements in3(R") ) = ) ) es)

Using an index to describe the focal elements is handy when
we want to use efficiently the belief functions. In this sedroof. Let A be inB(En). We have:
tion, we will present an approach of belief functions fouthde

on the definition of a function describing the set of focal el-3(R™ BR" BR" BR"
ements g fh( >(A)'QQ( )(A) :/ dﬂl( >(y1)/ dﬂz( )(92)
. Fi, F3,
4.1 Credal measure (26)
) — . According to the theorem of Fubini, we have:
We try to model a belief ol ", A"). The set of focal . .
elements linked to this belief is Writteﬁ(uB(Rn)). If we qf(R )(A) . qf(R )(A) =
can define a onto mapping named index function such as: / duf(mn) (1) duf(mn) (y2) = 27)
F%A Faoa
I, 7Y B(R") o BR" BR"
£ IGB(]R) ]:(M ) (18) / / d<ﬂ1( )®M2( ))(yhyz)
Y — f(y) FL, JFana
We can considersd®") as a positive measure on a Letf'©2 be amapping such as:
measurable spac€l, B(I)) which verifies the condition AR
= —n Lpoz. — N
d//"(]R )(y) < 1. If foreachA € B(]R ) the follow- frezihgs=nx1 f(“lm (28)
ing sets belong t&(1): y=(y,y2)  +— fy) N ()
We have
Fea={yelIlf'(y) C A} (19)
FL9? = (Flyx L) U (I x FZ,) (29)
Fra={y € I|(f'(y) N A) # 0} (20) = - -
lo2 _ 1 2
Fos={ycIIAC f'(y)} (21) Fod "= Foa < Foa (30)
FiQ2=FL, x F3, (31)

We name the measurable spa(@ B(I) ,uB(TRn) credal
These sets belong taraalgebra, sgf/t ©2 can be seen as

spaceand the positive measure linkededal measure We : : .
an index function. Therefore we can build a credal measure

define for allA ¢ B(E_{") the following belief functions: MB(]R ) such as:
102 )

lthe a-cuts of a functionf from R" to R* are the sets{y ¢ AR") ) BR"

R"|f(y) > a}. gy =M © g (32)



Hence: 4.3 Consonante credal measure induced by a

BR" BR" . . .
qlED2)(A):/1®2dN1E®2) W) (33) multimodal probability density
24 We model the different sources of information with multi-
We obtain: modal pdf. To merge these sources using the theory of be-
- lief functions, we have to link these probabilities to bklie
B(R" B(R™ B(R" i ignisti ion i
q1(®2)(A) _ Ch( )(A) . q2( )(A) (34) functions. The pignistic transform_a;[llon in the case of ated

measure is written for each € B(]R ):
O

AANS W) | gEe
Let f1 et f2 be two index functions linked to the credal ~ BetP (A4) = /F WWB(R Jy)  (40)
™" ™" NnNA
measureaf(m ) etuf(]R ). Let ¢ be an onto mapping from S .
I, to I such asp (y1) = ys implies f11 (y1) = fl2 (y,). We notice in this case that(B) is LEbesgue’s measure of
Let H, c I; and Hy C I, be two elements of Borel the hypervolumeB, element of3 (]R") (we decide that
) - . e .
5|gma-algnebra. b (H1) = Enand‘P (H2) = Hy imply 0/0 = 1). Let Betf be a continuous pdf o . We have

AR AR . a _ : _
i[Hk dg1 h) (y1)d= IfH2 dﬂ2( ) (y2), theln the two beliefs p.; ¢ (]R ) =0, amax] = I. We obtain the index function
Inked o the credal measures are equal. 1 such asfl (a) (with « in I) is thea-cut of Bet f and

Theorem 2. Let f1r et f12 be two index functions linked twodefine a consonant credal measu?@n> linked to Bet f.

credal measure ) et HE) Lety be a bijection such i
B Iﬂz . I‘P | Theorem 3. Let Betf be a continuous pdf. We can asso-
as(y1) = y» implies f11 (y1) = f7 (y2). These credal o0 1 1 18®") | a consonant credal measure whose the

measures are equal if focal element are the-cuts of Bet f such as:

duf(R)(yl)ZIdet(so’(yl))Iduf(R)(w(yl)) (35) duB®) (a) = X (f1 (@) dA (@) (41)
4.2 Consonant credal measure Proof. We will use two different expressions of

P(fL(a)). Thanks to the pignistic transforma-

. Be
The consonant credal measures are a particular casqié)rf we have:

credal measure. Indeed their index functigidsare bijec-

tions such as: O N(fL ()N fL o
CIS . I C E+ — f(uB(]R ) Cmax cs (42)
Y — fLy) (36) Letv be the measure such as:
and yo <y1 <= fl(y1) C fL(ya) A fs(a)) _ /a o )

Thanks to the index functiofy,, we can express the value of

belief function. By example, if the index space is an intérva ' o
i.e. I=[0, ymax], We have: BetP (fl(a)) :/a ydv (y) (44)

max

By differentiating these two expressions, we have:

bt () = [ 0

(37) a 1 —n
with y; the smallest element dfc 4 dv (a)/ mdMB(R )(y) = adv (a)  (45)
- L Hence:
plB(lR )(A) _ / d’uB(lR )(y) - ence
Y1 @ 1 —n
with y; the biggest element ifi 4 a= / mdMB(R )(y) (46)
. o, , A,
AF)(B) = / ) () 39) By differentiating, we have:
Y1 —=n
with y; the biggest element ifi5 4 dyB®") (a) = A (fL(@) dX (@) (47)
We notice that the conjonctive combination of two conso- O

nant credal measures is not consonant. It is a problem if

we want to merge a big quantity of information or realiz&/e can build a consonant credal measure for each continu-
a dynamic merging. A solution is to substitute the credals pdf. We will apply this result by building the consonant
measure by the isopignistic consonant credal measure. credal measure induced by a Gaussian mixture.



5 Applications development, it would be interrresting to prove that these
Toillustrate our results, we will use the previous theoremns functions are the least committed on singleton for an isopig
build the consonant credal measure induced by a continuéiRiC set as itis in [10]. Moreover, the study of the com-
pdf. To begin, we will demonstrate a classic result with cofutational cost would be interresting in the perpective of a

tinuous belief functions, the value of the consonante beligractical implementation. In a first time, we can imagine
function induced by a Gaussian. to use it in Joint Tracking and Classification problerok (

[1, 11]). We could also use this approach to develop some
Example 1 (Application to a Gaussian pdf. Let Betf methods to estimate continuous parameters.
be the pdf of a standard Gaussian distribution. We define
Betf~! as the inverse function adBet f restrained taR .
It is a bijection. According to the theorem 3, it induces —POF ofx
credal measure such as: 09" |---Probability to have x 0 J-w]]

BB (@) = A (fL (@) dA (a)
8 = QBgetf’1 ga) d (a) (48) v

0.61

As o = Betf (x), we have: o8t
d) () = Betf' (z)d\ (z) = zBetf (z)dA\ (z)  (49) Y

0.3r

Hence, according to the theorem 2, the credal measure: 02}

0.1r

diB®") () = 222 Betf (z) d) (z) (50)

describe the same belief ﬂg(ﬁn). That is the result given

by Ph. Smets in [10]. ) ) )
Figure 1: Gaussian mixture
We can use theorem 2 and 3 to build a consonante credal
measure linked to a Gaussian pdf. Unfortunately, it is not
always easy to find the analytic expressionRHtP o f1
and of X o f/.. However, we can compute a numerical af
proximation ofA (fes («)). We will compute the numerical —Probabilty to have x i the o—cut
approximation of the credal measure induced by a Gauss ---Volume of the a-cut
mixture. The results will be compared with the ones obta 2o

in [1].

25 T T T T T 1

L
o
0
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Example 2 (Application to a Gaussian mixture). In [1],

F. Caroret al. give an expression of bbd induced by a Gau:
sian pdf onR". To build a bbd induced by a Gaussian mix s
ture f = ", 8 f;, they decide to create it in a such way the

the plausibility verifies the equalityl = >, B;pl;. Hence st T, .

we obtain a belief function which is isopignistic fo How- R

ever, its focal elements are not thecuts of f but those of ‘ ‘ R
fi- This method does not build the consonant belief functic ’ ' ' a

induced byf. That has an influence on the value taken by
pl. We will work on the Gaussian mixture plotted in figure 1.
The numerical approximations éfet Po f. and\o f. are
plotted in figure 2. The obtained plausibility of the belief
function with theorem 3 is clearly bigger than the one ob-
tained thanks to [1] and its shape is differectt figure 3). References
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