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Abstract. Uncertain databases are used in some fields to store both certain and
uncertain data. When uncertainty is represented with the theory of belief func-
tions, uncertain databases are assumed to be evidential. In this paper, wesuggest
a new method to quantify the source degree of dependence in order to enrich its
evidential database by adding this dependence information. Enriching evidential
databases with its sources degree of dependence can help user when making his
decision. We used some generated mass functions to test the proposed method.
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1 Introduction

Databases are used to store a high quantity of structured data which are usually perfect.
Most of the time, available data are imperfect, thus the use of uncertain databases in
order to store both certain and uncertain data. Many theories manage uncertainty such
as thetheory of probabilities, the theory of fuzzy sets, the theory of possibilitiesand
the theory of belief functions. The theory of belief functions introduced by [4, 11] is
used to model imperfect (imprecise and/or uncertain) data and also to combine them.
In evidential databases, uncertainty is handled with the theory of belief functions.

In many fields such as target recognition the number of evidential databases is great,
and they store most of the time the same information providedby different sources.
Therefore, integrating evidential databases reduces the quantity of data to be stored and
also helps decision makers when handling all available information. Decision makers
will use only an integrated evidential database rather thanmany separated ones.

To combine uncertain information from different evidential databases many com-
bination rules can be used. Integrating evidential databases is useful when sources are
cognitively independent. A source is assumed to be cognitively independent towards an-
other one when the knowledge of that source does not affect the knowledge of the first
one. Enriching evidential databases with information about its source dependence in-
forms the user about the interaction between sources. In some cases, like when a source
is completely dependent on another one, the user can decide to discard the dependent
source and its evidential database is not integrated. Thus,we suggest a method to es-
timate the dependence between sources and to analyze the type of dependence when
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sources are dependent, thus a source may be dependent towards another one by saying
the same thing (positive dependence) or saying the opposite(negative dependence).

In the following, we introduce preliminaries of Dempster-Shafer theory as well
as evidential databases in the second section. In the third section, a belief clustering
method is presented and its classification result is used to estimate the sources degree
of independence. If sources seem to be dependent, it is interesting to investigate whether
this dependency is positive or negative in the fourth section. This method is tested on
random mass functions in the fifth section. Finally, conclusions are drawn.

2 Theory of belief functions

The theory of belief functions [4, 11] is used to model imperfect data.
In the theory of belief functions, theframe of discernmentalso calleduniverse of

discourseΩ = {ω1,ω2, . . . ,ωn} is a set ofn elementary and mutually exclusive and
exhaustive hypotheses. These hypotheses are all the possible and eventual solutions of
the problem under study.

The power set2Ω is the set of all subsets made up of hypotheses and union of
hypotheses fromΩ .

The basic belief function (bba)also calledmass functionis a function defined on
the power set 2Ω and affects a value from[0,1] to each subset. A mass functionm is a
function:

m : 2Ω 7→ [0,1] (1)

such that:

∑
A⊆Ω

m(A) = 1 (2)

One or many subsets may have a non null mass, this mass is the source’s belief that
the solution of the problem under study is in that subset.

The belief function (bel)is the minimal belief allocated to a subsetA justified by
available information onB (B⊆ A):

bel : 2Ω → [0,1]
A 7→ ∑

B⊆A,B6= /0

m(B) (3)

The implicability functionb is proposed to simplify computations:

b : 2Ω → [0,1]
A 7→ ∑

B⊆A

m(B) = bel(A)+m( /0) (4)

The theory of belief functions is used to model uncertain information and also to com-
bine them. A great number of combination rules are proposed such asDempster’s rule
of combination[4] which is used to combine two different mass functionsm1 andm2
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provided by two different sources as follows:

m1⊕2(A) = (m1⊕m2)(A) =



















∑
B∩C=A

m1(B)×m2(C)

1− ∑
B∩C= /0

m1(B)×m2(C)
∀A⊆ Ω , A 6= /0

0 if A= /0

(5)

The pignistic transformation is used to compute pignistic probabilities from masses
in the purpose of making a decision. The pignistic probability of a singletonX is given
by:

BetP(X) = ∑
Y∈2Θ

,Y 6= /0

|X∩Y|
|Y|

m(Y)
1−m( /0)

. (6)

2.1 Conditioning

When handling a mass function, a new evidence can arise confirming that a proposition
A is true. Therefore, the mass affected to each focal elementC has to be reallocated in
order to take consideration of this new evidence. This is achieved by the conditioning
operator. Conditioning a mass functionmover a subset A⊆Ω consists on restricting the
frame of possible propositions 2Ω to the set of subsets having a non empty intersection
with A. Therefore the mass allocated toC ⊆ Ω is transferred to{C∩A}. The obtained
mass function, result of the conditioning, is notedm[A] : 2Ω → [0,1] such that [10]:

m[A](C) =







0 for C 6⊆ A

∑
X⊆Ā

m(C∪X) for C⊆ A (7)

whereĀ is the complementary ofA.

2.2 Generalized bayesian theorem and disjunctive rule of combination

The generalized bayesian theorem(GBT), proposed by Smets [9], is a generalization
of the bayesian theorem where the joint belief function replaces the conditional proba-
bilities. LetX andY be two dependent variables defined on the frames of discernment
ΩX andΩY. Suppose that the conditional belief functionbel[X](Y) represents the con-
ditional belief onY according toX.
The aim is to compute the belief onX conditioned onY. Thus, the GBT is used to build
bel[Y](X):

bel[Y](X) = b[Y](X)−b[Y]( /0)
bel[Y](X) = ∏

xi∈X̄

b[xi ](Ȳ) (8)

The conditional belief functionbel[X](Y) can be extended to the joint frame of dis-
cernmentΩX ×ΩY, then conditioned onyi ⊆ ΩY and the result is then marginalized on
X, the corresponding operator is the disjunctive rule of combination:

bel[X](Y) = b[X](Y)−b[X]( /0)
bel[X](Y) = ∏

xi∈X
b[xi ](Y) (9)
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2.3 Evidential database

Classic databases are used to store certain data, whereas data are not always certain
but can sometimes be uncertain and even incomplete. The use of evidential database
(EDB), also calledD-S database, for storing data from different levels of uncertainty.
Evidential databases proposed by [1] and [6] are databases containing both certain
and/or uncertain data. Uncertainty and incompleteness in evidential databases are mod-
eled with the theory of belief functions previously introduced.

An evidential database is a database havingn records andp attributes such that
every attributea (1 ≤ a ≤ p) has an exhaustive domainΩa containing all its possible
values: itsframe of discernment[6].

An EDB has at least oneevidential attribute. Values of this attribute can be uncer-
tain, thus these values are mass functions and namedevidential values. An evidential
value Via for the ith record and theath attribute is a mass function such that:

mia : 2Ωa → [0,1] with:
mia( /0) = 0 and ∑

X⊆Ωa

mia(X) = 1 (10)

Table 1 is the example of an evidential database having 2 evidential attributes namely
road conditionand weather. Records of this evidential database are road condition
and weather predictions for the five coming days according toone source. The domain
Ωweather= {Sunny S, Rainy R, Windy W} is the frame of discernment of the evi-
dential attributeweatherand the domainΩRC= {Sa f e S, Perilous P, Dangerous D}
is the frame of discernment of the evidential attributeroad condition.

Table 1.Example of an EDB

Day Road condition Weather

d1 {P∪D}(1) S(0.3) R(0.7)

d2 S(1) S(0.2) {S∪W}(0.6) {S∪R∪W}(0.2)

d3 {S∪P∪D}(1) {S∪R∪W}(1)

d4 S(0.6) {S∪P}(0.4) S(0.4) {S∪R∪W}(0.6)

d5 S(1) S(1)

3 Independence

Evidential databases previously described store a great number of records (objects).
Similar objects may be stored in that type of databases meaning that similar situations
can be redundant. Clustering techniques are used to group several similar objects into
the same cluster. When havingn objects, the most similar ones are affected to the same
group. Applying a clustering technique to evidential database records (i.e. to mass func-
tions) is useful in order to group redundant cases. Some evidential clustering techniques
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are already proposed such as [5, 2, 8]. A method of sources independence estimating is
submitted in [3] and recalled in the following. In this paperwe suggest to specify the
type of dependence when sources are dependent and also to usethis information for
evidential database enrichment.

3.1 Clustering

We use here a clustering technique using a distance on belieffunctions given by [7]
such as in [2]. The number of clustersC have to be known, a setT containsn objects
oi : 1≤ i ≤ n which valuesmi j are belief functions defined on the frame of discernment
Ωa. Ωa is the frame of discernment of the evidential attribute.

This setT is a table of an evidential database having at least one evidential attribute
and at mostp evidential attributes.mia is a mass function value of theath attribute
for the ith object (record), this mass function is defined on the frame ofdiscernment
Ωa (Ωa is the domain of theath attribute). A dissimilarity measure is used to quantify
the dissimilarity of an objectoi having{mi1, . . . ,mi j , . . . ,mip} as its attributes values
towards a clusterClk containingnk objectso j . The dissimilarityD of the objectoi and
the clusterClk is as follows:

D(oi ,Clk) =
1
nk

nk

∑
j=1

1
p

p

∑
l=1

d(mΩa
il ,mΩa

jl ) (11)

and

d(mΩa
1 ,mΩa

2 ) =

√

1
2
(mΩa

1 −mΩa
2 )tD(mΩa

1 −mΩa
2 ) (12)

with:

D(A,B) =

{

1 if A= B= /0
|A∩B|
|A∪B| ∀A,B∈ 2Ωa

(13)

We note that1p ∑p
l=1d(mΩa

il ,mΩa
jl ) is the dissimilarity between two objectsoi ando j . The

dissimilarity between two objects is the mean of the distances between belief functions
values of evidential attributes (evidential values). Eachobject is affected to the closest
cluster (having the minimal dissimilarity value) in an iterative way until reaching the
stability of the cluster repartition.

3.2 Independence measure

Definition 1. Two sources are considered to be independent when the knowledge of one
source does not affect the knowledge of the other one.

The aim is to study mass functions provided by two sources in order to reveal
any dependence between these sources. Provided mass functions are stored in eviden-
tial databases, thus each evidential database stores objects having evidential values for
some evidential attributes. Suppose having two evidentialdatabasesEDB1 andEDB2

provided by two distinct sourcess1 ands2. Each evidential database contains aboutn
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records (objects) andp evidential attributes. Each mass function stored in thatEDB
can be a classification result according to each source. The aim is to find dependence
between sources if it exists. In other words, two sourcess1 ands2 classifying each one
n objects.mia (ath attribute’s value for theith object) provided bys1 and that provided
by s2 are referred to the same objecti. If s1 ands2 are dependent, there will be a rela-
tion between their belief functions. Thus, we suggest to classify mass functions of each
source in order to verify if clusters are independent or not.The proposed method is in
two steps, in the first step mass functions of each source are classified then in the second
step the weight of the linked clusters is quantified.

1. Step 1: Clustering
Clustering technique, presented in section 3.1, is used in order to classify mass
functions provided by boths1 ands2, the number of clusters can be the cardinality
of the frame of discernment. After the classification, objects stored inEDB1 and
provided bys1 are distributed onC clusters and objects ofs2 stored inEDB2 are
also distributed onC clusters. The output of this step areC clusters ofs1, notedClk1

andC different clusters ofs2, notedClk2, with 1≤ k1,k2 ≤C.
2. Step 2: Cluster independence

Once cluster repartition is obtained, the degree of independence and dependence
between sources are quantified in this step. The most similarclusters have to be
linked, a cluster matching is performed for both clusters ofs1 and that ofs2. The
dissimilarity between two clustersClk1 of s1 andClk2 of s2 is the mean of distances
between objectsoi contained inClk1 and all the objectso j contained onClk2:

δ 1(Clk1,Clk2) =
1

nk1

nk1

∑
l=1

D(ol ,Clk2) (14)

We note thatnk1 is the number of objects on the clusterClk1 andδ 1 is the dissimi-
larity towards the sources1.

Dissimilarity matrixM1 andM2 containing respectively dissimilarities between clus-
ters ofs1 according to clusters ofs2 and dissimilarities between clusters ofs2 according
to clusters ofs1, are defined as follows:

M1 =













δ 1
11 δ 1

12 . . . δ 1
1C

. . . . . . . . . . . .

δ 1
k1 δ 1

k2 . . . δ 1
kC

. . . . . . . . . . . .

δ 1
C1 δ 1

C2 . . . δ 1
CC













and M2 =













δ 2
11 δ 2

12 . . . δ 2
1C

. . . . . . . . . . . .

δ 2
k1 δ 2

k2 . . . δ 2
kC

. . . . . . . . . . . .

δ 2
C1 δ 2

C2 . . . δ 2
CC













(15)

We note thatδ 1
k1k2

is the dissimilarity betweenClk1 of s1 andClk2 of s2 andδ 2
k1k2

is the

dissimilarity betweenClk2 of s2 andClk1 of s1 andδ 1
k1k2

= δ 2
k2k1

. M2 the dissimilarity ma-
trix of s2 is the transpose ofM1 the dissimilarity matrix ofs1. Clusters ofs1 are matched
to the most similar clusters ofs2 and clusters ofs2 are linked to the most similar clusters
of s1. Two clusters ofs1 can be linked to the same cluster ofs2. A different matching
of clusters is obtained according tos1 ands2. A set of matched clusters is obtained for
both sources and a mass function can be used to quantify the independence between the
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couple of clusters. Suppose that the clusterClk1 of s1 is matched toClk2 of s2, a mass
functionm defined on the frame of discernmentΩI = {DependentĪ , Independent I}
describes how much this couple of clusters is independent ordependent as follows:











mΩI
k1k2

(Ī) = α(1−δ 1
k1k2

)

mΩI
k1k2

(I) = αδ 1
k1k2

mΩI
k1k2

(Ī ∪ I) = 1−α
(16)

whereα is a discounting factor. Whenα = 1, the obtained mass function is a probabilis-
tic mass function which quantifies the dependence of each matched clusters according
to each source. A mass function is obtained for each matched clustersClk1 andClk2,
thusC mass functions are obtained for each source. The combination of thatC mass
functionsmΩI

k1k2
using Dempster’s rule of combination is a mass functionmΩI reflecting

the overall dependence of one source towards the other one:

mΩI =⊕mΩI
k1k2

(17)

After the combination, two mass functions describing the dependence ofs1 towardss2

and that ofs2 towardss1 are obtained. Pignistic probabilities are derived from mass
functions using the pignistic transformation in a purpose of making decision about the
dependence of sources. A sources1 is dependent on the sources2 if BetP(Ī) ≥ 0.5
otherwise it is independent.BetP(Ī) is the pignistic probability of̄I computed from
mΩI

s1 (Ī).

4 Negative and positive dependence

A mass function describing the independence of one source towards another one can
inform about the degree of dependence but does not inform if this dependence is positive
or negative. In the case of dependent sources, this dependence can be positive meaning
that the classification of one source is directly affected bythe classification of the other
one, thus both sources have the same knowledge. In the case ofnegative dependence,
the knowledge of one source is the opposite of the other one.

Definition 2. A source is positively dependent on another source when the belief of the
first one is affected by the knowledge of the belief of the second one and both beliefs are
similar.
If a sources1 is negatively dependent ons2, s1 is always saying the opposite of what
saids2.

Definition 3. A source is negatively dependent on another source when their beliefs
are different although the belief of the first one is affect bythe knowledge of the belief
of the second one.
If matched clusters contain the same objects thus these clusters are positively dependent.
It means that both sources are almost classifying objects inthe same way. If matched
clusters contain different objects thus one source is negatively dependent on the other
because it is classifying differently the same objects. A mass function defined on the
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frame of discernmentΩP = {Positive Dependent P, Negative Dependent̄P} can
be built in order to quantify the positivity or negativity ofthe dependence of a cluster
Clk1 of s1 and a clusterClk2 of s2 such thatClk1 andClk2 are matched according tos1 as
follows:



















mΩP
k1k2

(P|Ī) = 1−
|Clk1

∩Clk2
|

|Clk1
|

mΩP
k1k2

(P̄|Ī) =
|Clk1

∩Clk2
|

|Clk1
|

mΩP
k1k2

(P∪ P̄|Ī) = 0

(18)

We note that these mass functions are conditional mass functions because they do
not exist if sources are independent, thus these mass functions are dependent on the
dependency of sources. These mass functions are also probabilistic. In order to have the
marginal mass functions, the Disjunctive Rule of Combination proposed by Smets [9] in
section 2.2 can be used in order to compute the marginal mass functions defined on the
frame of discernmentΩP. Marginal mass functions are combined using Dempster’s rule
of combination presented in equation (5), then the pignistic transformation is used to
compute pignistic probabilities which are used to decide about the type of dependence
and also to enrich the corresponding evidential databases.

5 Example

The method described above is tested on generated mass functions. Mass functions are
generated randomly using the following algorithm:
This algorithm is used to generaten random mass functions which decisions (using

Algorithm 1 Mass generating
Require: |Ω |, n : number of mass functions
1: for i = 1 ton do
2: Choose randomlyF , the number of focal elements on[1, |2Ω |].
3: Divide the interval[0,1] into F continuous sub intervals.
4: Choose randomly a mass from each sub interval and attribute it to focal elements.
5: Attribute these masses to focal elements previously chosen.
6: The complement to 1 of the attributed masses sum is affected to the total ignorancem(Ω).
7: end for
8: return n mass functions

the pignistic transformation) are not known, whereas in thecase of positive or negative
dependence decision classes have to be checked.

1. Positive dependence:
When sources are positively dependent, the decided class (using the pignistic trans-
formation) of one is directly affected by that of the other one. To test this case,
we generated 100 mass functions on a frame of discernment of cardinality 5. Both
sources are classifying objects in the same way because one of the sources is posi-
tively dependent on the other as follows:
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Algorithm 2 Positive dependent Mass function generating
Require: n mass functions generated using algorithm 1, Decided classes
1: for i = 1 ton do
2: Find them focal elements of theith mass function
3: for j = 1 tom do
4: The mass affected to thejth focal element is transferred to its union with the decided

class.
5: end for
6: end for
7: return n mass functions

Applying the method described above, we obtained this mass function defined on
the frameΩP = {P, P̄} and describing the positive and negative dependence ofs1

towardss2:
m(P) = 0.679,m(P̄) = 0.297,m(P̄∪P) = 0.024
Using the pignistic transformationBetP(P) = 0.691 andBetP(P̄) = 0.309, mean-
ing thats1 is positively dependent ons2. The marginal mass function of the positive
and negative dependence ofs2 according tos1:
m(P) = 0.6459,m(P̄) = 0.3272,m(P̄∪P) = 0.0269
Using the pignistic transformationBetP(P)= 0.6593 andBetP(P̄)= 0.3407, mean-
ing thats2 is positively dependent ons1.

2. Negative dependence:
When sources are negatively dependent, one of the sources is saying the opposite
of the other one. In other words, when the classification result of the first source
is a classA, the second source may classify this object in any other class but not
A. Negative dependent mass functions are generated in the same way as positive
dependent mass functions but the mass of each focal element is transferred to focal
elements having a null intersection with the decided class.In that case, we obtain
this mass function of the dependence ofs1 according tos2:
m(P) = 0.0015,m(P̄) = 0.9909,m(P̄∪P) = 0.0076
Using the pignistic transformationBetP(P)= 0.0053 andBetP(P̄)= 0.9947, mean-
ing thats1 is negatively dependent ons2. The marginal mass function of the depen-
dence ofs2 according tos1:
m(P) = 0.0011,m(P̄) = 0.9822,m(P̄∪P) = 0.0167
Using the pignistic transformationBetP(P) = 0.00945 andBetP(P̄) = 0.99055,
meaning thats2 is negatively dependent ons1. These mass functions are added to
the corresponding evidential databases to enrich them.mΩI

k1k2
are not certain mass

functions, thus some degree of total ignorance appears inm(P̄∪P) when using the
DRC.

6 Conclusion

Enriching evidential databases with dependence information can inform users about
the degree of interaction between their sources. In some cases where one source is
completely dependent on an another one, the evidential database of that source can be
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discarded when making a decision. In this paper, we suggested a method estimating the
dependence degree of one source towards another one. As a future work, we may try to
estimate the dependence of one source according to many other sources and not only
one source.
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Compìegne, France (2012).

4. Dempster, A. P.: Upper and Lower probabilities induced by a multivalued mapping. Annals of
Mathematical Statistics, vol. 38, pp. 325–339 (1967).

5. Denoeux, T.: Ak-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE
Transactions on Systems, Man and Cybernetics, vol. 25(5), pp. 804–813 (1995).

6. Hewawasam, K.K.R.G.K., Premaratne, K. and Subasingha, S.P., Shyu, M.-L.: Rule Mining
and Classification in Imperfect Databases. In Int. Conf. on Information Fusion, pp. 661–668.
Philadelphia, USA (2005).
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