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Abstract In the theory of belief functions many combination rules are proposed
in the purpose of merging and confronting several sources opinions. Some com-
bination rules are used when sources are cognitively independent whereas others
are specific to dependent sources. In this paper, we suggest a method to quantify
sources degrees of dependence in order to choose the more appropriate combination
rule. We used generated mass functions to test the proposed method.

1 Introduction

Decision making is more and more difficult when using imperfect data, however
information can be imprecise, uncertain and even not available. Usually decision
is made using precise and certain data but available information are not always so.
Many theories manage uncertainty such as the theory of probabilities, the theory
of fuzzy sets, the theory of possibilities and the theory of belief functions. Within
imperfect environment, combining several imperfect information helps users and
decision makers to reduce the degree of uncertainty by confronting several opinions.
The theory of belief functions presents a strong framework for combination.

To combine uncertain information many combination rules can be used. Some
of these combination rules are used when sources are cognitively independent like
[6, 7, 9, 10, 13] but the cautious rule [5] is applied when sources are dependent.
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A source is assumed to be cognitively independent towards another one when the
knowledge of the belief of that source does not affect the belief of the first one.
In some cases, like when a source is completely dependent on another source, the
user can decide to discard the dependent source and its mass functions from the
combination.

Some researches are focused on the sources statistical dependence such as [1, 2]
and others [12, 11] tackled the cognitive dependence between variables. This paper
is focused on sources dependence measuring. Thus, we suggest a method to estimate
the dependence between sources.

In the following, we introduce preliminaries of the theory of belief functions in
the second section. In the third section, the independence measure is presented. This
independence is estimated in three steps, in the first step a clustering technique is
applied then similar clusters are matched in the second step and finally a weight is
affected to matched clusters. This method is tested on random mass functions in the
fourth section. Finally, conclusions are drawn.

2 Theory of belief functions

The theory of belief functions was introduced by [4] and [12] and so called
Dempster-Shafer theory to model imperfect information held by a source (an ex-
pert, a belief holder, etc.). In this section, we will remind some basic notions of this
theory as seen in the transferable belief model [10].

The frame of discernment Ω = {ω1,ω2, . . . ,ωn} is a set of n elementary and mu-
tually exclusive and exhaustive hypotheses. These hypotheses are all the possible
and eventual solutions of the problem under study. The power set 2Ω is the set of
all subsets made up of hypotheses and union of hypotheses from Ω . The basic be-
lief assignment (bba) also called mass function is a function defined on the power
set 2Ω and affects a value from [0,1] such that: ∑

A⊆Ω

m(A) = 1. We can also assume

that: m( /0) = 0. A subset A having a strictly positive mass is called focal element.
The mass allocated to this focal element A is the source’s degree of belief that the
solution of the problem under study is in A. In the theory of belief functions, a great
number of combination rules [6, 7, 9, 10, 13] are used to summarize all combined
mass functions into only one mass function reflecting all the sources beliefs. The
first combination rule was proposed by Dempster in [4] and is defined for two dis-
tinct mass functions m1 and m2:

m1 ∩©2(A) = (m1 ∩©m2)(A) =


∑

B∩C=A
m1(B)×m2(C)

1− ∑
B∩C= /0

m1(B)×m2(C)
∀A⊆Ω , A 6= /0

0 if A = /0

(1)
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Dempster’s rule of combination together with other rules [6, 7, 9, 10, 13] are used to
combine independent mass functions. In the case of dependent sources, the cautious
rule [5] can be applied. After the combination, the pignistic probability BetP(A) is
generally used to decide.

3 Independence

Independence concept was first introduced in probability theory in the purpose of
studying dependent statistical variables. In the probability theory, two variables A
and B are assumed to be independent if one of these equivalent conditions is satis-
fied: P(A∩B) = P(A)∗P(B) or P(A|B) = P(A). Statistical independence is general-
ized from probability theory to the theory of belief functions [1, 2]. Mass functions
can be seen as subjective probabilities held by sources (experts, belief holders, . . . )
who can communicate, thus cognitive independence is specially defined in the the-
ory of belief functions. A definition of cognitive independence was first proposed
by Shafer ([12], page 149) as ”two frames of discernment may be called cognitively
independent with respect to the evidence if new evidence that bears on only one of
them will not change the degree of support for propositions discerned by the other”.
Smets [11] claims that two variables are independent when the knowledge of the
value taken by one of them does not affect our belief about the other. This paper is
not focused on variables independence but on sources independence.

Definition 1. Two sources are independent when the knowledge of the belief pro-
vided by one source does not affect the belief of the other source, otherwise these
sources are dependent.
Not only communicating sources are considered to be dependent but also sources
having the same background of knowledge since their beliefs are similar. In this
paper, mass functions provided by two sources are studied in order to reveal any de-
pendence between them. Therefore, the aim is to find dependence between sources
if it exists. In the following, we define an independence measure Id, (Id(s1,s2) is the
independence of s1 towards s2) verifying the following axioms:

1. Non-negativity: The independence of a source s1 on an another source s2,
Id(s1,s2) cannot be negative, it is a positive or null degree.

2. Normalization: Source independence Id is a degree on [0,1], it is null when the
source is dependent from the other one, equal to 1 when it is completely inde-
pendent and a degree in [0,1] otherwise.

3. Non-symmetry: If a source s1 is dependent on a source s2, s2 is not necessarily
dependent on s1. Even if s1 and s2 are mutually dependent, degrees of dependence
are not the same.

4. Identity: Id(s1,s1) = 0. A source is completely dependent from it self.

If two sources s1 and s2 are dependent, there will be a relation between their belief
functions. The main idea of this paper is to classify mass functions provided by
each source, then a study of the similarities between cluster repartitions can reveal
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any dependence between sources. Once clustering is performed, the idea is to study
the sources overall behavior. The proposed method is in three steps, in the first step
mass functions of each source are classified then in the second step similar clusters
are matched and finally the weights of the linked clusters are quantified in the third
step.

3.1 Clustering

In this paper, we use a modified C-means algorithm with the distance on belief
functions given by [8] such as in [3] to classify mass functions of one source. The
number of clusters C has to be also known, a set T contains n objects oi : 1≤ i≤ n
which values mi are belief functions defined on a frame of discernment Ω . For
example, a doctor is diagnosing the disease of n patients and giving each time a
mass function as an uncertain diagnostic. In that case, patients are considered as
these objects oi to be classified, the frame of discernment Ω contains all the possible
diseases and mi is the mass function provided by the doctor when diagnosing each
patient oi. In this section a clustering technique is performed on mass functions mi
provided by the same source in order to study the overall behavior of a source.

This clustering technique is based on a dissimilarity measure which is used to
quantify the dissimilarity of an object oi towards a cluster Clk. The dissimilarity D
of the object oi towards the cluster Clk is the mean of distances between mi the mass
function value of the object oi and all the nk mass functions classified into the cluster
Clk as follows:

D(oi,Clk) =
1
nk

nk

∑
j=1

d(mΩ
i ,mΩ

j ) (2)

d(mΩ
1 ,mΩ

2 ) =

√
1
2
(mΩ

1 −mΩ
2 )tD(mΩ

1 −mΩ
2 ),D(A,B) =

{
1 if A = B = /0
|A∩B|
|A∪B| ∀A,B ∈ 2Ω (3)

Each object is affected to the most similar cluster in an iterative way until reach-
ing an unchanged cluster partition. It is obvious that the number of clusters C has to
be fixed. In this paper, we suppose that C is the cardinality of the frame of discern-
ment. In a classification problem, the cardinality of the frame of discernment is the
number of classes that is why we choose C = |Ω | in this paper.

3.2 Cluster matching

Clustering technique, given in section 3.1, is used to classify mass functions pro-
vided by both sources s1 and s2, the number of clusters is assumed to be the car-
dinality of the frame of discernment. After the classification, both mass functions
provided by s1 and s2 are distributed on C clusters. Once clustering performed the
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most similar clusters have to be linked, a cluster matching is performed for both
clusters of s1 and that of s2. The dissimilarity between two clusters Clk1 of s1 and
Clk2 of s2 is the mean of distances between objects ol ∈Clk1 and ow ∈Clk2 :

δ
1(Clk1 ,Clk2) =

1
nk1

nk1

∑
l=1

1
nk2

nk2

∑
w=1

d(ol ,ow) (4)

We note that nk1 is the number of objects on the cluster Clk1 , δ 1 is the dissimilarity
towards the source s1 and d is the distance defined by equation (3). It is obvious that
d(ol ,ow) ∈ [0,1]. δ 1(Clk1 ,Clk2) is the mean of pairwise distances between objects
of Clk1 and Clk2 , thus δ 1(Clk1 ,Clk2) ∈ [0,1].

A dissimilarity matrix M1 containing dissimilarities of clusters of s1 according to
clusters of s2, and M2 the dissimilarity matrix between clusters of s2 and clusters of
s1 are defined as follows:

M1 =


δ 1

11 δ 1
12 . . . δ 1

1C
. . . . . . . . . . . .
δ 1

k1 δ 1
k2 . . . δ 1

kC
. . . . . . . . . . . .
δ 1

C1 δ 1
C2 . . . δ 1

CC

 and M2 =


δ 2

11 δ 2
12 . . . δ 2

1C
. . . . . . . . . . . .
δ 2

k1 δ 2
k2 . . . δ 2

kC
. . . . . . . . . . . .
δ 2

C1 δ 2
C2 . . . δ 2

CC

 (5)

We note that δ 1
k1k2

is the dissimilarity between Clk1 of s1 and Clk2 of s2 and
δ 2

k1k2
is the dissimilarity between Clk2 of s2 and Clk1 of s1 and δ 1

k1k2
= δ 2

k2k1
. The

dissimilarity matrix M2 of s2 is the transpose of the dissimilarity matrix of s1 noted
M1. Therefore, a unique matrix M1 can be used to store dissimilarities between all
clusters of s1 and that of s2. Clusters of s1 are matched to the nearest clusters of s2,
a cluster Clk1 of s1 is matched to the cluster having the minimal dissimilarity δ 1

k1.
and a cluster Clk2 of s2 is matched to the cluster having the minimal dissimilarity
δ 2

k2.
= δ 1

.k2
.Two clusters of s1 can be linked to the same cluster of s2. The output are

C cluster matchings of s1, C different cluster matchings of s2 and 2×C dissimilarity
values of each matched clusters.

3.3 Cluster independence

Once cluster matching is obtained, the degree of independence and dependence
between sources are quantified in this step. A set of matched clusters is ob-
tained for both sources and a mass function can be used to quantify the inde-
pendence between each couple of clusters. Suppose that the cluster Clk1 of s1 is
matched to Clk2 of s2, a mass function m defined on the frame of discernment
ΩI = {Dependent Dep, Independent Ind} describes how much this couple of
clusters is independent or dependent as follows:
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mΩI

k1k2
(Dep) = α (1−δ 1

k1k2
)

mΩI
k1k2

(Ind) = α δ 1
k1k2

mΩI
k1k2

(Dep∪ Ind) = 1−α

(6)

The coefficient α is used to take into account the number of mass functions in each
cluster. Mass functions defining sources dependence are not provided by any source
whereas they are estimations of the sources dependence. The coefficient α is not
the reliability of any source but it can be seen as the reliability of the estimation.
Therefore, the more a cluster contains mass functions the more our dependence
measure estimation of that cluster is reliable. For example, let us take two clusters
the first one containing only one mass function and the second one containing 100
mass functions, it is obvious that the dependency estimation of the second cluster is
more precise and significant than the dependency estimation of the first one.

The obtained mass functions quantify the independence of each matched clusters
according to each source. Therefore, C mass functions are obtained for each source
such that each mass function quantifies the independence of each couple of matched
clusters. The combination of C mass functions for each source using Dempster’s rule
of combination defined by equation (1) is a mass function mΩI defining the whole
dependence of one source towards the other one: mΩI = ∩©mΩI

k1k2
.

Two different mass functions mΩI
s1 and mΩI

s2 are obtained for s1 and s2 re-
spectively. We note that mΩI

s1 is the combination of C mass functions represent-
ing the dependence of matched clusters defined using equation (6). These mass
functions are different since cluster matchings are different which verifies the ax-
iom of non-symmetry. δ 1

k1k2
,δ 2

k2k1
∈ [0,1] which verifies the non-negativity and

the normalization axioms. Finally, pignistic probabilities are computed from these
mass functions in order to decide about these sources independence Id such that
Id(s1,s2) = BetP(Ind) and Id(s1,s2) = BetP(Dep), if BetP(Ind)> 0.5 we can claim
that the corresponding source is independent from the other one otherwise it is de-
pendent.

4 Examples on generated mass functions

To test this method we used generated mass functions. Thus, two sets of mass func-
tions are generated for two sources s1 and s2. We note that the number of sources
is always two (s1 and s2) because the dependence is a binary relationship. Thus
a source is dependent or independent according to another one. For the sake of
simplicity, we take here the discounting factor α = 1, thus mass functions are not
discounted. To generate bbas, some information are needed: the cardinality of the
frame of discernment |Ω |, the number of mass functions. Mass functions are gener-
ated as follows:

1. The number of focal elements F is chosen randomly from [1, |2Ω |]. The F focal
elements are also chosen randomly from the power set.
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2. The interval [0,1] is divided randomly into F continuous sub intervals.
3. A random mass from each sub interval is attributed to focal elements. Masses are

attributed to focal elements chosen in the first step. The complement to 1 of the
attributed masses sum is affected to the total ignorance m(Ω).

This method is used to generate a random mass function, thus the number of focal
elements and masses are attributed randomly. Using the pignistic transformation,
the decided class is not known from the beginning. In some cases generated mass
functions are corrected in order to correct the classification result as follows:

1. Generate a mass function as described above,
2. to change the classification result of the generated mass function, masses affected

to each focal element are transfered to its union with the decided class.

Dependent sources: When sources are dependent, they are either providing sim-
ilar belief functions with the same decided class (using the pignistic transformation)
or one of the sources is saying the opposite of what says the other one. In the case
of sources deciding the same class, the decided class of one source is directly af-
fected by that of the other one. To test this case, we generated 100 mass functions
on a frame of discernment of cardinality 5. Both sources are classifying objects in
the same way. Applying the method described above, the obtained mass function
defined on the frame ΩI = {Ind, Dep} and describing the independence of s1 to-
wards s2 is m(Ind) = 0.0217, m(Dep) = 0.9783 meaning that Id(s1,s2) = 0.0217
and Id(s1,s2) = 0.9783. Thus s1 is highly dependent on s2.
The mass function of the independence of s2 according to s1 is m(Ind) = 0.022,
m(Dep) = 0.978. It proves that s2 is also dependent on s1 because Id(s2,s1) = 0.978.

When sources are indirectly dependent, one of them is saying the opposite of the
other one. In other words, when the decision class of the first source is a class A, the
second source may classify this object in any other class but not A. In that case, the
obtained mass function for the dependence of s1 according to s2 is m(Ind) = 0.0777,
m(Dep) = 0.9223 meaning that s1 is dependent on s2 because Id(s1,s2) = 0.9223.
The mass function of the independence of s2 according to s1 is m(Ind) = 0.0805,
m(Dep) = 0.9195, thus s2 is also highly dependent on s1 and Id(s2,s1) = 0.9195.
Thus s1 is dependent towards s2 with a degree 0.978 and s2 is dependent towards s1
with a degree 0.9195. s1 and s2 are mutually dependent.

Independent sources: We generated randomly 100 mass functions for both
sources s1 and s2. The number of focal elements is randomly chosen on the in-
terval [1, 2Ω

4 ] rather than [1,2Ω ] to reduce the number of focal elements. The ob-
tained mass function of the independence of s1 according to s2 is m(Ind) = 0.7211,
m(Dep) = 0.2789. The mass function of the independence of s2 according to s1 is
m(Ind) = 0.6375, m(Dep) = 0.3625. Thus s1 is independent towards s2 because
Id(s1,s2) = 0.7211 and s2 is independent towards s1 because Id(s2,s1) = 0.6375. s1
and s2 are mutually independent.



8 Mouna Chebbah, Arnaud Martin and Boutheina Ben Yaghlane

5 Conclusion

Combining mass functions provided by different sources is helpful when making
decision. The choice of the combination rule is conditioned on the sources depen-
dence, thus the cautious rule is especially used when sources are dependent but other
rules can be applied with independent sources. In this paper, we suggested a method
estimating the dependence degree of one source towards another one. As a future
work, we may try to estimate the dependence of one source according to many other
sources and not only one source. When one source is dependent on another one, this
dependence can be direct (positive dependence) or indirect (negative dependence).
Thus, we will also quantify the positive and negative dependence in the case of de-
pendent sources. We will also define the discounting factor which will be a function
of the number of mass functions. Finally, we will use the discounting operator in
order to take into account the number of provided mass functions because we can-
not decide on the sources independence if they do not provide a sufficient number
of mass functions.
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