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Abstract: In this chapter, we propose a new practical codification
of the elements of the Venn diagram in order to easily manipulate
the focal elements. In order to reduce the complexity, the eventual
constraints must be integrated in the codification at the beginning.
Hence, we only consider a reduced hyper-power set DΘ

r that can be 2Θ

or DΘ. We describe all the steps of a general belief function frame-
work. The step of decision is studied in particular when we have to
decide on intersections of the singletons of the discernment space no
actual decision functions are easily to use. Hence, two approaches
are proposed, an extension of previous one and an approach based
on the specificity of the elements on which to decide. The principal
goal of this chapter is to provide practical codes of a general belief
function framework for the researchers and users needing the belief
function theory.
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7.1 Introduction

Today the belief function theory initiated by [6, 26] is recognized to propose one of the
more complete theories for human reasoning under uncertainty, and has been applied
in many kinds of applications [32]. This theory is based on the use of functions defined
on the power set 2Θ (the set of all the subsets of Θ), where Θ is the set of considered
elements (called discernment space), whereas the probabilities are defined only on Θ.
A mass function or basic belief assignment , m is defined by the mapping of the power
set 2Θ onto [0, 1] with: X

X∈2Θ

m(X) = 1. (7.1)

One element X of 2Θ, such as m(X) > 0, is called focal element. The set of focal
elements for m is noted Fm. A mass function where Θ is a focal element, is called a
non-dogmatic mass functions.

One of the main goals of this theory is the combination of information given
by many experts. When this information can be written as a mass function, many
combination rules can be used [23]. The first combination rule proposed by Dempster
and Shafer is the normalized conjunctive combination rule given for two basic belief
assignments m1 and m2 and for all X ∈ 2Θ, X 6= ∅ by:

mDS(X) =
1

1− k
X

A∩B=X

m1(A)m2(B), (7.2)

where k =
X

A∩B=∅
m1(A)m2(B) is the inconsistency of the combination (generally

called conflict).

However the high computational complexity, especially compared to the probabi-
lity theory, remains a problem for more industrial uses. Of course, higher the cardi-
nality of Θ is, higher the complexity becomes [38]. The combination rule of Dempster
and Shafer is #P -complete [25]. Moreover, when combining with this combination
rule, non-dogmatic mass functions, the number of focal elements can not decrease.

Hence, we can distinguish two kinds of approaches to reduce the complexity of the
belief function framework. First we can try to find optimal algorithms in order to code
the belief functions and the combination rules based on Möbius transform [18, 33]
or based on local computations [28] or to adapt the algorithms to particulars mass
functions [3, 27]. Second we can try to reduce the number of focal elements by
approximating the mass functions [4, 9, 16, 17, 36, 37], that could be particularly
important for dynamic fusion.

In practical applications the mass functions contain at first only few focal elements
[1, 7]. Hence it seems interesting to only work with the focal elements and not with
the entire space 2Θ. That is not the case in all general developed algorithms [18, 33].

Now if we consider the extension of the belief function theory proposed by [10],
the mass function is defined on the extension of the power set into the hyper-power
set DΘ (that is the set of all the disjunctions and conjunctions of the elements of
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Θ). This extension can be seen as a generalization of the classical approach (and it
is also called DSmT for Dezert and Smarandache Theory [29, 30]). This extension is
justified in some applications such as in [20, 21]. Try to generate DΘ is not easy and
becomes untractable for more than 6 elements in Θ [11].

In [12], a first proposition has been proposed to order elements of hyper-power
set for matrix calculus such as [18, 33] made in 2Θ. But as we said herein, in real
applications it is better to only manipulate the focal elements. Hence, some authors
propose algorithms considering only the focal elements [9, 15, 22]. In the previous
volume [15, 30] have proposed MATLABTM codes for DSmT hybrid rule. These
codes are a preliminary work, but first it is really not optimized for MATLABTM and
second have been developed for a dynamic fusion.

MATLABTM is certainly not the best program language to reduce the speed of
processing, however most of people using belief functions do it with MATLABTM.

In this chapter, we propose a codification of the focal elements based on a cod-
ification of Θ in order to program easily in MATLABTM a general belief function
framework working for belief functions defined on 2Θ but also on DΘ.

Hence, in the following section we recall a short background of belief function
theory. In section 7.3 we introduce our practical codification for a general belief
function framework. In this section, we describe all the steps to fuse basic belief
assignments in the order of necessity: the codification of Θ, the addition of the
constraints, the codification of focal elements, the step of combination, the step of
decision, if necessary the generation of a new power set: the reduced hyper-power set
DΘ

r and for the display, the decoding. We particularly investigate the step of the
decision for the DSmT. In section 7.5 we give the major part of the MATLABTM

codes of this framework.

7.2 Short background on theory of belief functions

In the DSmT, the mass functions m are defined by the mapping of the hyper-power
set DΘ onto [0, 1] with: X

X∈DΘ

m(X) = 1. (7.3)

In the more general model, we can add constraints on some elements of DΘ,
that means that some elements can never be focal elements. Hence, if we add the
constraints that all the intersections of elements of Θ are impossible (i.e. empty) we
recover 2Θ. So, the constraints given by the application can drastically reduce the
number of possible focal elements and so the complexity of the framework. On the
contrary of the suggestion given by the flowchart on the cover of the book [29] and the
proposed codes in [15], we think that the constraints must be integrated directly in
the codification of the focal elements of the mass functions as we shown in section 7.3.
Hereunder, the hyper-power set DΘ taking into account the constraints is called the
reduced hyper-power set and noted DΘ

r . Hence, DΘ
r can be DΘ, 2Θ, have a cardinality

between these two power sets or inferior to these two power sets. So the normality
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condition is given by: X

X∈DΘ
r

m(X) = 1, (7.4)

where we consider less terms in the sum than in the equation (7.3).
Once the mass functions coming from numerous sources are defined, many combi-

nation rules are possible (see [5, 20, 23, 31, 35] for recent reviews of the combination
rules). Most of the combination rules are based on the conjunctive combination rule,
given for mass functions defined on 2Θ by:

mc(X) =
X

Y1∩...∩Ys=X

sY

j=1

mj(Yj), (7.5)

where Yj ∈ 2Θ is the response of the source j, and mj(Yj) the corresponding basic
belief assignment. This rule is commutative, associative, not idempotent, and the
major problem which the majority of the rules try to resolve is the increase of the
belief on the empty set with the number of sources and the cardinality of Θ [19].
Now, in DΘ without any constraint, there is no empty set, and the conjunctive rule
given by the equation (7.5) for all X ∈ DΘ with Yj ∈ DΘ

r can be used. If we have
some constraints, we must transfer the belief mc(∅) on other elements of the reduced
hyper-power set. There is no optimal combination rule, and we cannot achieve this
optimality for general applications.

The last step in a general framework for information fusion system is the decision
step. The decision is also a difficult task because no measures are able to provide the
best decision in all the cases. Generally, we consider the maximum of one of the three
functions: credibility, plausibility, and pignistic probability. Note that other decision
functions have been proposed [13].

In the context of the DSmT the corresponding generalized functions have been
proposed [14, 29]. The generalized credibility Bel is defined by:

Bel(X) =
X

Y ∈DΘ
r ,Y ⊆X,Y 6≡∅

m(Y ) (7.6)

The generalized plausibility Pl is defined by:

Pl(X) =
X

Y ∈DΘ
r ,X∩Y 6≡∅

m(Y ) (7.7)

The generalized pignistic probability is given for all X ∈ DΘ
r , with X 6= ∅ is defined

by:

GPT(X) =
X

Y ∈DΘ
r ,Y 6≡∅

CM(X ∩ Y )

CM (Y )
m(Y ), (7.8)

where CM(X) is the DSm cardinality corresponding to the number of parts of X in
the Venn diagram of the problem [14, 29] associated with a model M. Generally in
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2Θ, the maximum of these functions is taken on the elements in Θ. In this case, with
the goal to reduce the complexity we only have to calculate these functions on the
singletons. However, first, there exist methods providing decision on 2Θ such as in [2]
and that can be interesting in some application [24], and secondly, the singletons are
not the more precise elements on DΘ

r . Hence, to calculate these functions on the
entire reduced hyper-power set could be necessary, but the complexity could not be
inferior to the complexity of DΘ

r and that can be a real problem if there are a few
constraints.

7.3 A general belief function framework

We introduce here a practical codification in order to consider all the previous remarks
to reduce the complexity:

• only manipulate focal elements,

• add constraints on the focal elements before combination, and so work on DΘ
r ,

• a codification easy for union and intersection operations with programs such
as MATLABTM.

We first give the simple idea of the practical codification for enumerating the
distinct parts of the Venn diagram and therefore a codification of the discernment
space Θ. Then we explain how simply add the constraints on the distinct elements
of Θ and how to do the codification of the focal elements. The subsections 7.3.4
and 7.3.5 show how to combine and decide with this practical codification, giving
a particular reflexion on the decision in DSmT. The subsection 7.3.6 presents the
generation of DΘ

r and the subsection 7.3.7 the decoding.

7.3.1 A practical codification

The simple idea of the practical codification is based on the affectation of an integer
number in [1; 2n − 1] to each distinct part of the Venn diagram that contains 2n − 1
distinct parts with n = |Θ|. The figures 7.1 and 7.2 illustrate the codification for
respectively Θ = {θ1, θ2, θ3} and Θ = {θ1, θ2, θ3, θ4} with the code given in section 7.5.
Of course other repartitions of these integers are possible.

Hence, for example the element θ1 is given by the concatenation of 1, 2, 3 and 5
for |Θ| = 3 and by the concatenation of 1, 2, 3, 4, 6, 7, 9 and 12 for |Θ| = 4. We will
note respectively θ1 = [1 2 3 5] and θ1 = [1 2 3 4 6 7 9 12] for |Θ| = 3 and for |Θ| = 4,
with increasing order of the integers. Hence, Θ is given respectively for |Θ| = 3 and
|Θ| = 4 by:

Θ = {[1 2 3 5], [1 2 4 6], [1 3 4 7]}
and

Θ = {[1 2 3 4 6 7 9 12], [1 2 3 5 6 8 10 13], [1 2 4 5 7 8 11 14], [1 3 4 5 9 10 11 15]}.
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Figure 7.1: Codification for Θ = {θ1, θ2, θ3}.

The number of integers for the codification of one element θi ∈ Θ is given by:

1 +

n−1X

i=1

Ci
n−1, (7.9)

with n = |Θ| and Cp
n the number of p-uplets with n numbers. The number 1 will be

always by convention be the intersection of all the elements of Θ. The codification of
θ1 ∩ θ3 is given by [1 3] for |Θ| = 3 and [1 2 4 7] for |Θ| = 4. And the codification of
θ1 ∪ θ3 is given by [1 2 3 4 5 7] for |Θ| = 3 and [1 2 3 4 6 7 9 12] for |Θ| = 4.

In order to reduce the complexity, especially using more hardware language than
MATLABTM, we could use binary numbers instead of the integer numbers.

The Smarandache’s codification [11], was introduced for the enumeration of dis-
tinct parts of a Venn diagram. If |Θ| = n, < i > denotes the part of θi with no
covering with other θj , i 6= j. < ij > denotes the part of θi ∩ θj with no covering
with other parts of the Venn diagram. So if n = 2, θ1 ∩ θ2 = {< 12 >} and if n = 3,
θ1 ∩ θ2 = {< 12 >,< 123 >}, see the figure 7.3 for an illustration for n = 3. The
authors note a problem for n ≥ 10, but if we introduce space in the codification we
can conserve integers instead of other symbols and we write < 1 2 3 > instead of
< 123 >.

Contrary to the Smarandache’s codification, the proposed codification gives only
one integer number to each part of the Venn diagram. This codification is more
complex for the reader then the Smarandache’s codification. Indeed, the reader can
understand directly the Smarandache’s codification thanks to the meaning of the
numbers knowing the n: each disjoint part of the Venn diagram is seen as an inter-
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Figure 7.2: Codification for Θ = {θ1, θ2, θ3, θ4}.

section of the elements of Θ. More exactly, this is a part of the intersections. For
example, θ1 ∩ θ2 is given with the Smarandache’s codification by {< 12 >} if n = 2
and by {< 12 >,< 123 >} if n = 3. With the practical codification the same element
has also different codification according to the number n. For the previous example
θ1 ∩ θ2 is given by [1] if n = 2, and by [1 2] if n = 3.

The proposed codification is more practical for computing union and intersection
operations and the DSm cardinality, because only one integer represents one of the
distinct parts of the Venn diagram. With Smarandache’s codification computing
union and intersection operations and the DSm cardinality could be very similar
than with the practical codification, but adding a routine in order to treat the code
of one part of the Venn diagram.

Hence, we propose to use the proposed codification to compute union, intersection
and DSm cardinality, and the Smarandache’s codification, easier to read, to present
the results in order to save eventually a scan of DΘ

r .
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Figure 7.3: Smarandache’s codification for Θ = {θ1, θ2, θ3}.

7.3.2 Adding constraints

With this codification, adding constraints is very simple and can reduce rapidly the
number of integers. For example assume that in a given application we know θ1∩θ3 ≡
∅ (i.e. θ1 ∩ θ3 /∈ DΘ

r ), that means that the integers [1 3] for |Θ| = 3 and [1 2 4 7]
for |Θ| = 4 do not exist. Hence, the codification of Θ with the reduced discernment
space, noted Θr, is given respectively for |Θ| = 3 and |Θ| = 4 by:

Θr = {[2 5], [2 4 6], [4 7]}

and

Θr = {[3 6 9 12], [3 5 6 8 10 13], [5 8 11 14], [3 5 9 10 11 15]}.
Generally we have |Θ| = |Θr|, but it is not necessary if a constraint gives θi ≡ ∅, with
θi ∈ Θ. This can happen in dynamic fusion, if one element of the discernment space
can disappear.

Thereby, the introduction of the simple constraint θ1 ∩ θ3 ≡ ∅ in Θ, includes all
the other constraints that follow from it such as the intersection of all the elements
of Θ is empty. In [15] all the constraints must be given by the user.

7.3.3 Codification of the focal elements

In DΘ
r , the codification of the focal elements is given from the reduced discernment

space Θr. The codification of an union of two elements of Θ is given by the con-
catenation of the codification of the two elements using Θr. The codification of an
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intersection of two elements of Θ is given by the common numbers of the codifica-
tion of the two elements using Θr. In the same way, the codification of an union of
two focal elements is given by the concatenation of the codification of the two focal
elements and the codification of an intersection of two focal elements is given by the
common numbers of the codification of the two focal elements. In fact, for union and
intersection operations we only consider one element as the set of the numbers given
in its codification.

Hence, with the previous example (we assume θ1 ∩ θ3 ≡ ∅, with |Θ| = 3 or
|Θ| = 4), if the following elements θ1 ∩ θ2, θ1 ∪ θ2 and (θ1 ∩ θ2) ∪ θ3 are some focal
elements, there are coded for |Θ| = 3 by:

θ1 ∩ θ2 = [2],

θ1 ∪ θ2 = [2 4 5 6],

(θ1 ∩ θ2) ∪ θ3 = [2 4 7],

and for |Θ| = 4 by:
θ1 ∩ θ2 = [3 6],

θ1 ∪ θ2 = [3 5 6 8 9 10 12 13],

(θ1 ∩ θ2) ∪ θ3 = [3 5 6 8 11 14].

The DSm cardinality CM(X) of one focal element X is simply given by the number
of integers in the codification of X. The DSm cardinality of one singleton is given
by the equation (7.9), only if there is no constraint on the singleton, and is inferior
otherwise.

The previous example with the focal element (θ1 ∩ θ2) ∪ θ3 illustrates well the
easiness to deal with the brackets in one expression. The codification of the focal
elements can be made with any brackets.

7.3.4 Combination

In order to manage only the focal elements and their associated basic belief assign-
ment, we can use a list structure [9, 15, 22]. The intersection and union operations
between two focal elements coming from two mass functions are made as described
before. If the intersection between two focal elements is empty the associated cod-
ification is [ ]. Hence the conjunctive combination rule algorithm can be done by
algorithm 1. The disjunctive combination rule algorithm is exactly the same by
changing ∩ in ∪.

Once again, the interest of the codification is for the intersection and union op-
erations. Hence in MATLABTM, we do not need to redefine these operations as
in [15].

For more complicated combination rules such as PCR6, we have generally to con-
serve the intermediate calculus in order to transfer the partial conflict. Algorithms
for these rules have been proposed in [22], and MATLABTM codes are given in sec-
tion 7.5.
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Algorithm 1: Conjunctive rule

Data: n experts ex: ex[1] . . . ex[n], ex[i].focal, ex[i].bba
Result: Fusion of ex by conjunctive rule: conj
extmp ← ex[1];
for e = 2 to n do

comb← ∅;
foreach foc1 in extmp.focal do

foreach foc2 in ex[e].focal do
tmp← extmp.focal(foc1) ∩ ex[e].focal(foc2);
comb.focal← tmp;
comb.bba← extmp.bba(foc1)× ex[e].bba(foc2);

Concatenate same focal in comb;
extmp← comb;

conj ← extmp;

7.3.5 Decision

As we wrote before, we can decide with one of the functions given by the equa-
tions (7.6), (7.7), or (7.8). These functions are increasing functions. Hence generally
in 2Θ, the decision is taken on the elements in Θ by the maximum of these functions.
In this case, with the goal to reduce the complexity, we only have to calculate these
functions on the singletons. However, first, we can provide a decision on any element
of 2Θ such as in [2] that can be interesting in some applications [24], and second, the
singletons are not the more precise or interesting elements on DΘ

r . The figures 7.4
and 7.5 show the DSm cardinality CM(X), ∀X ∈ DΘ with respectively |Θ| = 3 and
|Θ| = 4. The specificity of the singletons (given by the DSm cardinality) appears at
a central position in the set of the specificities of the elements in DΘ.

Hence, to calculate these decision functions on all the reduced hyper-power set
could be necessary, but the complexity could not be inferior to the complexity of DΘ

r

and that can be a real problem. The more reasonable approach is to consider either
only the focal elements or a subset of DΘ

r on which we calculate decision functions.

7.3.5.1 Extended weighted approach

Generally in 2Θ, the decisions are only made on the singletons [8, 34], and only a few
approaches propose a decision on 2Θ. In order to provide decision on any elements
of DΘ

r , we can first extend the principle of the proposed approach in [2] on DΘ
r . This

approach is based on the weighting of the plausibility with a Bayesian mass function
taking into account the cardinality of the elements of 2Θ.

In a general case, if there is no constraint, the plausibility is not interesting
because all elements contain the intersection of all the singletons of Θ. According to
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Figure 7.4: DSm cardinality CM(X), ∀X ∈ DΘ with |Θ| = 3.

the constraints the plausibility could be used.
Hence, we generalize here the weighted approach to DΘ

r for every decision func-
tion fd (plausibility, credibility, pignistic probability, ...). We note fwd the weighted
decision function given for all X ∈ DΘ

r by:

fwd(X) = md(X)fd(X), (7.10)

where md is a basic belief assignment given by:

md(X) = KdλX

„
1

CM(X)s

«
, (7.11)

s is a parameter in [0, 1] allowing a decision from the intersection of all the singletons
(s = 1) (instead of the singletons in 2Θ) until the total indecision Θ (s = 0). λX

allows the integration of the lack of knowledge on one of the elements X in DΘ
r . The

constant Kd is the normalization factor giving by the condition of the equation (7.4).
Thus we decide the element A:

A = arg max
X∈DΘ

r

fwd(X), (7.12)

If we only want to decide on whichever focal element of DΘ
r , we only consider

X ∈ Fm and we decide:
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Figure 7.5: DSm cardinality CM (X), ∀X ∈ DΘ with |Θ| = 4.

A = arg max
X∈Fm

fwd(X), (7.13)

with fwd given by the equation (7.10) and:

md(X) = KdλX

„
1

CM(X)s

«
, ∀X ∈ Fm, (7.14)

s and Kd are the two parameters defined above.

7.3.5.2 Decision according to the specificity

The cardinality CM(X) can be seen as a specificity measure of X. The figures 7.4
and 7.5 show that for a given specificity there is different kind of elements such as
singletons, unions of intersections or intersections of unions. The figure 7.6 shows well
the central role of the singletons (the DSm cardinality of the singletons for |Θ|=5
is 16), but also that there are many other elements (619) with exactly the same
cardinality. Hence, it could be interesting to precise the specificity of the elements
on which we want to decide. This is the role of s in the Appriou approach. Here we
propose to directly give the wanted specificity or an interval of the wanted specificity
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Figure 7.6: Number of elements of DΘ for |Θ| = 5, with the same DSm cardi-
nality.

in order to build the subset of DΘ
r on which we calculate decision functions. Thus we

decide the element A:

A = arg max
X∈Sfd(X),

(7.15)

where fd is the chosen decision function (credibility, plausibility, pignistic probability,
...) and

S =
n
X ∈ DΘ

r ;minS ≤ CM(X) ≤ maxS

o
, (7.16)

with minS and maxS respectively the minimum and maximum of the specificity of
the wanted elements. If minS 6= maxS, if have to chose a pondered decision function
for fd such as fwd given by the equation (7.10).

However, in order to find all X ∈ S we must scan DΘ
r . To avoid to scan all DΘ

r ,
we have to find the cardinality of S , but we can only calculate an upper bound of the
cardinality, unfortunately never reached. Let us define the number of elements of the
Venn diagram nV . This number is given by:

nV = CM
 

n[

i=1

θi

!
, (7.17)
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where n is the cardinality of Θr and θi ∈ Θr. Recall that the DSm cardinality is
simply given by the number of integers of the codification. The upper bound of the
cardinality of S is given by:

|S| <
maxSX

s=minS

Cs
nV
, (7.18)

where Cs
nV

is the number of combinations of s elements among nV . Note that it also
works if minS = 0 for the empty set.

7.3.6 Generation of DΘ
r

The generation of DΘ
r could have the same complexity than the generation of DΘ if

there is no constraint given by the user. Today, the complexity of the generation of
DΘ is the complexity of the proposed code in [11]. Assume for example, the simple
constraint θ1 ∩ θ2 ≡ ∅. First, the figures 7.7(a) and 7.7(b) show the DSm cardinality
for the elements of DΘ

r with |Θ| = 4 and the previous given constraint. On the left
part of the figure, the elements are ordered by increasing DSm cardinality and on the
right part of the figure with the same order as the figure 7.5. We can observe that the
cardinality of the elements have naturally decreased and the number of non empty
elements also. This is more interesting if the cardinality of Θ is higher. Figure 7.8
presents for a given positive DSm cardinality, the number of elements of DΘ

r for
|Θ| = 5 and with the same constraint θ1 ∩ θ2 ≡ ∅. Compared to figure 7.6, the total
number of non empty elements (the integral of the curve) is considerably lower.

(a) Elements are ordered by increasing
DSm cardinality.

(b) Elements are ordered with the
same order than the figure 7.5.

Figure 7.7: DSm cardinality CM(X), ∀X ∈ DΘ
r with |Θ| = 4 and θ1 ∩ θ2 ≡ ∅.
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Thus, we have to generate DΘ
r and not DΘ. The generation of DΘ (see [11] for

more details) is based on the generation of monotone boolean functions. A monotone
boolean function fmb is a mapping of (x1, ..., xb) ∈ {0, 1}b to a single binary output
such as ∀x, x′ ∈ {0, 1}b, with x 4 x′ then fmb(x) ≤ fmb(x′). Hence, a monotone
boolean function is defined by the values of the 2b elements (x1, ..., xb), and there
is |Db| different monotone boolean functions. All the values of all these monotone
boolean functions can be represented by a |Db| × 2b matrix. If we multiply this
matrix by the vector of all the possible intersections of the singletons in Θ with
|Θ| = b (there are 2b intersections) given an union of intersections, we obtain all the
elements of DΘ. We can also use the basis of all the unions of Θ (and obtain the
intersections of unions), but with our codification the unions are coded with more
integer numbers. So, the intersection basis is preferable.

Moreover, if we have some constraints (such as θ1 ∩ θ2 ≡ ∅), some elements of
the intersection basis can be empty. So we only need to generate a |Db| × nb matrix
where nb is the number of non empty intersections of elements in Θr. For example,
with the constraint given in example for |Θ| = 3, the basis is given by: ∅, θ1, θ2, θ3,
θ1 ∩ θ3, θ2 ∩ θ3, and there are no θ1 ∩ θ2 and θ1 ∩ θ2 ∩ θ3.

Hence, the generation of DΘ
r can run very fast if the basis is small, i.e. if there

are some constraints. The MATLABTM code is given in section 7.5.

7.3.7 Decoding

Once the decision on one element A of DΘ
r is taken, we have to transmit this decision

to the human operator. Hence we must to decode the element A (given by the integer
numbers of the codification) in terms of unions and intersections of elements of Θ.
If we know that A is in a subset of elements of DΘ

r given by the operator, we only
have to scan this subset. Now, if the decision A comes from the focal elements (a
priori unknown) or from all the elements of DΘ

r we must scan all DΘ
r with possibly

high complexity. What we propose here is to consider the elements of DΘ
r ordering

with first the elements most encountered in applications. Hence, we first scan the
elements of 2Θ and in the same time the intersection basis that we must build for the
generation of DΘ

r . Then, only if the element is not found we generate DΘ
r and stop

the generation when found (see the section 7.5 for more details).
Smarandache’s codification is an alternative to the decoding because the user can

directly understand it. Hence we can represent the focal element as an union of the
distinct part of the Venn diagram. Smarandache’s codification allows a clear under-
standing of the different parts of the Venn diagram unlike the proposed codification.
This representation of the results (for the combination or the decision) does not need
the generation of DΘ

r . However, if we need to generate DΘ
r according to the strategy

of decision, the decoding will give a better display without more generation of DΘ
r .
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Figure 7.8: Number of elements of DΘ
r for |Θ| = 5 and θ1 ∩ θ2 ≡ ∅, with the

same positive DSm cardinality.

7.4 Concluding remarks

This chapter presents a general belief function framework based on a practical cod-
ification of the focal elements. First the codification of the elements of the Venn
diagram gives a codification of Θ. Then, the eventual constraints are integrated giv-
ing a reduced discernment space Θr. From the space Θr, we obtain the codification
of the focal elements. Hence, we manipulate elements of a reduced hyper-power set
DΘ

r and not the complete hyper-power set DΘ, reducing the complexity according to
the kind of given constraints.

With the practical codification, the step of combination is easily made using union
and intersection functions.

The step of decision was particularly studied, because of the difficulties to decide
on DΘ or DΘ

r . An extension of the approach given in [2] in order to give the possibility
to decide on the unions in 2Θ was proposed. Another approach based on the specificity
was proposed in order to simply choose the elements on which to decide according to
their specificity.

The principal goal of this chapter is to provide practical codes of a general belief
function framework for the researchers and users needing the belief function theory.
However, for sake of clarity, all the MATLABTM codes are not in the listing, but can
be provided on demand to the author. The proposed codes are not optimized either
for MATLABTM, or in general and can still have bugs. All suggestions in order to
improve them are welcome.
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7.5 MATLABTM codes

We give and explain here some MATLABTM codes of the general belief function
framework1. Note that the proposed codes are not optimized either for MATLABTM,
or in general.

First the human operator has to describe the problem (see function 1) giving the
cardinality of Θ, the list of the focal elements and the corresponding bba for each
experts, the eventual constraints (‘ ’ if there is no constraint), the list of elements on
which he wants to obtain a decision and the parameters corresponding to the choice
of combination rule, the choice of decision criterion the mode of fusion (static or
dynamic) and the display. When this is done, he just has to call the fuse function 2.

Function 1. - Command configuration

% description of the problem

CardTheta=4; % cardinality of Theta

% list of experts with focal elements and associated bba

expert(1).focal={’1’ ’1u3’ ’3’ ’1u2u3’};

expert(1).bba=[0.5421 0.2953 0.0924 0.0702];

expert(2).focal={’1’ ’2’ ’1u3’ ’1u2u3’};

expert(2).bba=[0.2022 0.6891 0.0084 0.1003];

expert(3).focal={’1’ ’3n4’ ’1u2u3’};

expert(3).bba=[0.2022 0.6891 0.1087];

constraint={’1n2’ ’1n3’ ’2n3’}; % set of empty elements

elemDec={’F’}; % set of decision elements

%-------------------------------------------------------------

% parameters

criterionComb=1; % combination criterion

criterionDec=0; % decision criterion

mode=’static’; % mode of fusion

display=3; % kind of display

%-------------------------------------------------------------

% fusion

fuse(expert,constraint,CardTheta,criterionComb,criterionDec,...

mode,elemDec,display)

1Copyright c© 2009 Arnaud Martin. May be used free of charge for non commercial
products. Selling without prior written consent is prohibited. Obtain permission before
redistributing.
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The first step of the fuse function 2 is the coding. The cardinality of Θ gives
the codification of the singletons of Θ, thanks to the function 3, then we add the
constraints to Θ with the function 4 and obtain Θr. With Θr, the function 6 calling
the function 5 codes the focal elements of the experts given by the human operator.
The combination is made by the function 7 in static mode. For dynamic fusion,
we just consider one expert with the previous combination. In this case the order
of the experts given by the user can have an important signification. The decision
step is made with the function 11. The last step concerns the display and the hard
problem of the decoding. Thus, 4 choices are possible: no display, the results of the
combination only, the results of decision only and both results. These displays could
take a long time according to the parameters given by the human operator. Hence,
the results of the combination could have the complexity of the generation of DΘ

r and
must be avoided if the user does not need it. The complexity of the decision results
could also be high if the user does not give the exact set of elements on which to
decide, or only the singletons with ‘S’ or on 2Θ with ‘2T’. In other cases, with luck,
the execution time can be short thanks to the function 18.

Function 2. - Fuse function

function fuse(expert,constraint,n,criterionComb,criterionDec,...

...mode,elemDec,display)

% To fuse experts’ opinions

%

% fuse(expert,constraint,n,criterionComb,criterionDec,mode,...

% ...elemDec,display)

%

% Inputs:

% expertC = contains the structure of the list of coded focal

% elements and corresponding bba for all the experts

% constraint = the empty elements

% elemDec = list of elements on which we can decide

% n = size of the discernment space

% criterionComb = is the combination criterion

% criterionComb=1 Smets criterion

% criterionComb=2 Dempster-Shafer criterion (normalized)

% criterionComb=3 Yager criterion

% criterionComb=4 disjunctive combination criterion

% criterionComb=5 Florea criterion

% criterionComb=6 PCR6

% criterionComb=7 Mean of the bbas

% criterionComb=8 Dubois criterion (normalized and

% disjunctive combination)

% criterionComb=9 Dubois and Prade criterion

% (mixt combination)
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% criterionComb=10 Mixt Combination

% (Martin and Osswald criterion)

% criterionComb=11 DPCR (Martin and Osswald criterion)

% criterionComb=12 MDPCR (Martin and Osswald criterion)

% criterionComb=13 Zhang’s rule

%

%

% criterionDec = is the combination criterion

% criterionDec=0 maximum of the bba

% criterionDec=1 maximum of the pignistic probability

% criterionDec=2 maximum of the credibility

% criterionDec=3 maximum of the credibility with reject

% criterionDec=4 maximum of the plausibility

% criterionDec=5 Appriou criterion

% criterionDec=6 DSmP criterion

%

% mode = ’static’ or ’dynamic’

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements

% only, SF for singleton plus focal elements, Cm for given

% specificity, 2T for only 2^Theta (DST case)

% display = kind of display

% display = 0 for no display,

% display = 1 for combination display,

% display = 2 for decision display,

% display = 3 for both displays,

% display = 4 for both displays with Smarandache

% codification

%

% Output:

% res = contains the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

% Coding

[Theta,Scod]=codingTheta(n);

ThetaRed=addConstraint(constraint,Theta);

expertCod=codingExpert(expert,ThetaRed);

%--------

switch nargin

case 1:5
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mode=’static’;

elemDec=ThetaRed;

display=4;

case 6

elemDec=ThetaRed;

display=4;

case 7

elemDec=string2code(elemDec);

display=4;

end

%--------

if (display==1) || (display==2) || (display==3)

[DThetar,D_n]=generationDThetar(ThetaRed);

else

switch elemDec{1}

case {’A’}

[DThetar,D_n]=generationDThetar(ThetaRed);

otherwise

DThetar.s={[]};

DThetar.c={[]};

end

end

%--------

% Combination

if strcmp(mode, ’static’)

[expertComb]=combination(expertCod,ThetaRed,criterionComb);

else % dynamic case

nbexp=size(expertCod,2);

expertTmp(1)=expertCod(1);

for exp=2:nbexp

expertTmp(2)=expertCod(exp);

expertTmp(1)=combination(expertTmp,ThetaRed,...

...criterionComb);

end

expertComb=expertTmp(1);

end

% Decision

[decFocElem]=decision(expertComb,ThetaRed,DThetar.c,...

...criterionDec,elemDec);

% Display

switch display
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case 0

’no display’

case 1

% Result of the combination

sFocal=size(expertComb.focal,2);

focalRec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(focalRec)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertComb.bba(i)) ] )

end

case 2

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,...

...ThetaRed);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

case 3

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(expertDec.focal)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertDec.bba(i)) ] )

end

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,...

...ThetaRed,DThetar);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])
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end

end

end

case 4

% Results with Smarandache codification display

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=cod2ScodExpert(expertComb,Scod);

for i=1:sFocal

disp ([expertDec.focal{i},’=’,...

...num2str(expertDec.bba(i))])

end

% Result of the decision

if isstruct(decFocElem)

focalDec=cod2ScodFocal(decFocElem.focal,Scod);

disp([’decision:’,focalDec])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

otherwise

’Accident in fuse: choice of display is uncorrect’

end

7.5.1 Codification

The codification is based on the function 3. The order of the integer numbers could be
different, here the choice is made to number the intersection of all the elements with
1 and the smallest integer among the |Θ| = n bigger integers for the first singleton.
At the same time this function gives the correspondence between the integer numbers
of the practical codification and Smarandache’s codification. This function 3 is based
on the MATLABTM function nchoosek(tab,k) given the array of all the combination
of k elements of the vector tab. If the length of tab is n, this function return an array
of Ck

n rows and k columns.

Function 3. - codingTheta function

function [Theta,Scod]=codingTheta(n)
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% Code Theta for DSmT framework

%

% [Theta,Scod]=codingTheta(n)

%

% Input:

% n = cardinality of Theta

%

% Outputs:

% Theta = the list of coded elements in Theta

% Scod = the bijection function between the integer of

% the coded elements in Theta and the Smarandache codification

%

% Copyright (c) 2008 Arnaud Martin

i=2^n-1;

tabInd=[];

for j=n:-1:1

tabInd=[tabInd j];

Theta{j}=[i];

Scod{i}=[j];

i=i-1;

end

i=i+1;

for card=2:n

tabPerm=nchoosek(tabInd,card);

for j=1:n

[l,c]=find(tabPerm==j);

tabi=i.*ones(1,size(l,1));

Theta{j}=[sort(tabi-l’) Theta{j}];

for nb=1:size(l,1)

Scod{i-l(nb)}=[Scod{i-l(nb)} j];

end

end

i=i-size(tabPerm,1);

end

The addition of the constraints is made in two steps: first the codification of the
elements in the list constraint is made with the function 5, then the integer numbers
in the codification of the constraints are suppressed from the codification of Θ. The
function string2code is just the translation of the brackets and union and intersection
operators in negative numbers (-3 for ‘(’, -4 for ‘)’, -1 for ‘∪’ and -2 for ‘∩’) in order
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to manipulate faster integers than strings. This simple function is not provided here.

Function 4. - addConstraint function

function [ThetaR]=addConstraint(constraint,Theta)

% Code ThetaR the reduced form of Theta

% taking into account the constraints given by the user

%

% [ThetaR]=addConstraint(constraint,Theta)

%

% Inputs:

% constraint = the list of element considered as constraint

% or ’2T’ to work on 2^Theta

% Theta = the description of Theta after coding

%

% Output:

% ThetaR = the description of coded Theta after reduction

% taking into account the constraints

%

% Copyright (c) 2008 Arnaud Martin

if strcmp(constraint{1}, ’2T’)

n=size(Theta,2);

nbCons=1;

for i=1:n

for j=i+1:n

constraint(nbCons)={[i -2 j]};

nbCons=nbCons+1;

end

end

else

constraint=string2code(constraint);

end

constraintC=codingFocal(constraint,Theta);

sConstraint=size(constraintC,2);

unionCons=[];

for i=1:sConstraint

unionCons=union(unionCons,constraintC{i});

end

sTheta=size(Theta,2);



Chapter 7: Implementing general belief function framework . . . 241

for i=1:sTheta

ThetaR{i}=setdiff(Theta{i},unionCons);

end

The function 5 simply transforms the list of focal elements given by the user
with the codification of Θ to obtain the list of constraints and with Θr for the focal
elements of each expert. The function 6 prepares the coding of focal elements and
returns the list of the experts with the coded focal elements.

Function 5. - codingFocal function

function [focalC]=codingFocal(focal,Theta)

% Code the focal element for DSmT framework

%

% [focalC]=codingFocal(focal,Theta)

%

% Inputs:

% focal = the list of focal element for one expert

% Theta = the description of Theta after coding

%

% Output:

% focalC = the list of coded focal element for one expert

%

% Copyright (c) 2008 Arnaud Martin

nbfoc=size(focal,2);

if nbfoc

for foc=1:nbfoc

elemC=treat(focal{foc},Theta);

focalC{foc}=elemC;

end

else

focalC={[]};

end

end

%%

function [elemE]=eval(oper,a,b)

if oper==-2

elemE=intersect(a,b);

else

elemE=union(a,b);

end
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end

%%

function [elemC,cmp]=treat(focal,Theta)

nbelem=size(focal,2);

PelemC=0;

oper=0;

e=1;

if nbelem

while e <= nbelem

elem=focal(e);

switch elem

case -1

oper=-1;

case -2

oper=-2;

case -3

[elemC,nbe]=treat(focal(e+1:end),Theta);

e=e+nbe;

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

case -4

cmp=e;

e=nbelem;

otherwise

elemC=Theta{elem};

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

end

e=e+1;

end

else

elemC=[];

end

end
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Function 6. - codingExpert function

function [expertC]=codingExpert(expert,Theta)

% Code the focal element for DSmT framework

%

% [expertC]=codingExpert(expert,Theta)

%

% Inputs:

% expert = structure containing the list of focal elements for

% each expert and the bba corresponding

% Theta = the description of Theta after coding

%

% Output:

% expertC = structure containing the list of coded focal element

% for each expert and the bba corresponding

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=string2code(expert(exp).focal);

expertC(exp).focal=codingFocal(focal,Theta);

expertC(exp).bba=expert(exp).bba;

end

end

7.5.2 Combination

The function 7 proposes many combination rules. Most of them are based on the
function 8, but for some combination rules we need to keep more information, so
we use the function 9 for the conjunctive combination. E.g. in the function 10
note the simplicity of the code for the PCR6 combination rule. The codes for other
combination rules are not given here for the sake of clarity.

Function 7. - combination function

function [res]=combination(expertC,ThetaR,criterion)

% Give the combination of many experts

%

% [res]=combination(expert,constraint,n,criterion)

%

% Inputs:
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% expertC = contains the structure of the list of focal elements

% and corresponding bba for all the experts

% ThetaR = the coded and reduced discernment space

% criterion = is the combination criterion

% criterion=1 Smets criterion (conjunctive rule in open world)

% criterion=2 Dempster-Shafer criterion (normalized)

% (conjunctive rule in closed world)

% criterion=3 Yager criterion

% criterion=4 disjunctive combination criterion

% criterion=5 Florea criterion

% criterion=6 PCR6

% criterion=7 Mean of the bbas

% criterion=8 Dubois criterion

% (normalized and disjunctive combination)

% criterion=9 Dubois and Prade criterion (mixt combination)

% criterion=10 Mixt Combination (Martin and Osswald criterion)

% criterion=11 DPCR (Martin and Osswald criterion)

% criterion=12 MDPCR (Martin and Osswald criterion)

% criterion=13 Zhang’s rule

%

% Output:

% res = contains the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

switch criterion

case 1

%Smets criterion

res=conjunctive(expertC);

case 2

%Dempster-Shafer criterion (normalized)

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

expConj.bba=expConj.bba/(1-k);

expConj.bba(ind)=0;

end

res=expConj;

case 3

%Yager criterion

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);
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if ~isempty(ind)

k=expConj.bba(ind);

eTheta=ThetaR{1};

for i=2:n

eTheta=[union(eTheta,ThetaR{i})];

end

indTheta=findeqcell(expConj.focal,eTheta);

if ~isempty(indTheta)

expConj.bba(indTheta)=expConj.bba(indTheta)+k;

expConj.bba(ind)=0;

else

sFocal=size(expConj.focal,2);

expConj.focal(sFocal+1)={eTheta};

expConj.bba(sFocal+1)=k;

expConj.bba(ind)=0;

end

end

res=expConj;

case 4

%disjounctive criterion

[res]=disjunctive(expertC);

case 5

% Florea criterion

expConj=conjunctive(expertC);

expDis=disjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

alpha=k/(1-k+k*k);

beta=(1-k)/(1-k+k*k);

expFlo=expConj;

expFlo.bba=beta.*expFlo.bba;

expFlo.bba(ind)=0;

nbFocConj=size(expConj.focal,2);

nbFocDis=size(expDis.focal,2);

expFlo.focal(nbFocConj+1:nbFocConj+nbFocDis)=...

...expDis.focal;

expFlo.bba(nbFocConj+1:nbFocConj+nbFocDis)=...

...alpha.*expDis.bba;

expFlo=reduceExpert(expFlo);
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else

expFlo=expConj;

end

res=expFlo;

case 6

% PCR6

[res]=PCR6(expertC);

case 7

% Means of the bba

[res]=meanbba(expertC);

case 8

% Dubois criterion (normalized & disjunctive combination)

expDis=disjunctive(expertC);

ind=findeqcell(expDis.focal,[]);

if ~isempty(ind)

k=expDis.bba(ind);

expDis.bba=expDis.bba/(1-k);

expDis.bba(ind)=0;

end

res=expDis;

case 9

% Dubois and Prade criterion (mixt combination)

[res]=DP(expertC);

case 10

% Martin and Ossawald criterion (mixt combination)

[res]=Mix(expertC);

case 11

% DPCR (Martin and Osswald criterion)

[res]=DPCR(expertC);

case 12

% MDPCR (Martin and Osswald criterion)

[res]=MDPCR(expertC);

case 13

% Zhang’s rule

[res]=Zhang(expert)

otherwise

’Accident: in combination choose of criterion: uncorrect’

end

Function 8. - conjunctive function
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function [res]=conjunctive(expert)

% Conjunctive Rule

%

% [res]=conjunctive(expert)

%

% Inputs:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal...

... element are different’

end

end

interm=expert(1);

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

i=1;

comb.focal={};

comb.bba=[];

for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)

tmp=intersect(interm.focal{foc1},...

...expert(exp).focal{foc2});

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end
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interm=reduceExpert(comb);

end

res=interm;

Function 9. - globalConjunctive function

function [res,tabInd]=globalConjunctive(expert)

% Conjunctive Rule conserving all the focal elements

% during the combination

%

% [res,tabInd]=globalConjunctive(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% outputs:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

% tabInd = table of the indices given the combination

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal...

... element are different’

end

end

interm=expert(1);

tabIndPrev=[1:1:nbfocal(1)];

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

i=1;

comb.focal={};

comb.bba=[];

tabInd=[];

for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)
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tmp=intersect(interm.focal{foc1},...

...expert(exp).focal{foc2});

tabInd=[tabInd [tabIndPrev(:,foc1);foc2]];

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end

tabIndPrev=tabInd;

interm=comb;

end

res=interm;

Function 10. - PCR6 function

function [res]=PCR6(expert)

% PCR6 combination rule

%

% [res]=PCR6(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Reference: A. Martin and C. Osswald, ’’A new generalization

% of the proportional conflict redistribution rule stable in

% terms of decision,’’ Applications and Advances of DSmT for

% Information Fusion, Book 2, American Research Press Rehoboth,

% F. Smarandache and J. Dezert, pp. 69-88 2006.

%

% Copyright (c) 2008 Arnaud Martin

[expertConj,tabInd]=globalConjunctive(expert);

ind=findeqcell(expertConj.focal,[]);
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nbexp=size(tabInd,1);

if ~isempty(ind)

expertConj.bba(ind)=0;

sInd=size(ind,2);

for i=1:sInd

P=1;

S=0;

for exp=1:nbexp

bbaexp=expert(exp).bba(tabInd(exp,ind(i)));

P=P*bbaexp;

S=S+bbaexp;

end

for exp=1:nbexp

expertConj.focal(end+1)=...

...expert(exp).focal(tabInd(exp,ind(i)));

expertConj.bba(end+1)=...

...expert(exp).bba(tabInd(exp,ind(i)))*P/S;

end

end

end

res=reduceExpert(expertConj);

7.5.3 Decision

The function 11 gives the decision on the expert focal element list for the correspond-
ing bba with one of the chosen criterion and on the elements given by the user for
the decision. Note that the choices ‘A’ and ‘Cm’ for the variable elemDec could take
a long time because it needs the generation of DΘ

r . This function can call one of the
decision functions 13, 14, 15, 16. If any decision is possible on the chosen elements
given by elemDec, the function returns -1. In case of rejected element, the function
returns 0.

Function 11. - decision function

function [decFocElem]=decision(expert,Theta,criterion,elemDec)

% Give the decision for one expert

%

% [decFocElem]=decision(expert,Theta,criterion)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% and corresponding bba for all the experts

% Theta = list of coded (and reduced with constraint) of the
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% elements of the discernement space

% criterion = is the combination criterion

% criterion=0 maximum of the bba

% criterion=1 maximum of the pignistic probability

% criterion=2 maximum of the credibility

% criterion=3 maximum of the credibility with reject

% criterion=4 maximum of the plausibility

% criterion=5 DSmP criterion

% criterion=6 Appriou criterion

% criterion=7 Credibility on DTheta criterion

% criterion=8 pignistic on DTheta criterion

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements

% only, SF for singleton plus focal elements, Cm for given

% specificity, 2T for only 2^Theta (DST case)

%

% Output:

% decFocElem = the retained focal element, 0 in case of reject, -1

% if the decision cannot be taken on elemDec

%

% Copyright (c) 2008 Arnaud Martin

type=1;

switch elemDec{1}

case ’S’

type=0;

elemDecC=Theta;

expertDec=expert;

case ’F’

elemDecC=expert.focal;

expertDec=expert;

case ’SF’

expertDec=expert;

n=size(Theta,2);

for i=1:n

expertDec.focal{end+1}=Theta{i};

expertDec.bba(end+1)=0;

end

expertDec=reduceExpert(expertDec);

elemDecC=expertDec.focal;

case ’Cm’

sElem=size(elemDec,2);

switch sElem
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case 2

minSpe=str2num(elemDec{2});

maxSpe=minSpe;

case 3

minSpe=str2num(elemDec{2});

maxSpe=str2num(elemDec{3});

otherwise

’Accident in decision: with the option Cm for ...

...elemDec give the specifity of decision element ...

...(eventually the minimum and the maximum of the ...

...desired specificity’

pause

end

elemDecC=findFocal(Theta,minSpe,maxSpe);

expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

ind=findeqcell(elemDecC,expert.focal{foc});

if ~isempty(ind)

expertDec.bba(ind)=expert.bba(foc);

else

expertDec.bba(ind)=0;

end

end

case ’2T’

type=0;

natoms=size(Theta,2);

expertDec.focal(1)={[]};

indFoc=findeqcell(expert.focal,{[]});

if isempty(indFoc)

expertDec.bba(1)=0;

else

expertDec.bba(1)=expert.bba(indFoc);

end

step =2;

for i=1:natoms

expertDec.focal(step)=codingFocal({[i]},Theta);

indFoc=findeqcell(expert.focal,...

...expertDec.focal{step});

if isempty(indFoc)
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expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

indatom=step;

for step2=2:indatom-2

expertDec.focal(step)=...

...{[union(expertDec.focal{step2},...

...expertDec.focal{indatom-1})]};

indFoc=findeqcell(expert.focal,...

...expertDec.focal{step});

if isempty(indFoc)

expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

end

end

elemDecC=expertDec.focal;

case ’A’

elemDecC=generationDThetar(Theta);

elemDecC=reduceFocal(elemDecC);

expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

expertDec.bba(findeqcell(elemDecC,...

...expert.focal{foc}))=expert.bba(foc);

end

otherwise

type=0;

elemDec=string2code(elemDec);

elemDecC=codingFocal(elemDec,Theta);

expertDec=expert;

nbElemDec=size(elemDecC,2);

for foc=1:nbElemDec

if ~isElem(elemDecC{foc}, expertDec.focal)

expertDec.focal{end+1}=elemDecC{foc};

expertDec.bba(end+1)=0;

end
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end

end

%---------------------------------------------------------

nbFocal=size(expertDec.focal,2);

switch criterion

case 0

% maximum of the bba

nbFocal=size(expertDec.focal,2);

nbElem=0;

for foc=1:nbFocal

ind=findeqcell(elemDecC,expertDec.focal{foc});

if ~isempty(ind)

bba(ind)=expertDec.bba(foc);

end

end

[bbaMax,indMax]=max(bba);

if bbaMax~=0

decFocElem.bba=bbaMax;

decFocElem.focal={elemDecC{indMax}};

else

decFocElem=-1;

end

case 1

% maximum of the pignistic probability

[BetP]=pignistic(expertDec);

decFocElem=MaxFoc(BetP,elemDecC,type);

case 2

% maximum of the credibility

[Bel]=credibility(expertDec);

decFocElem=MaxFoc(Bel,elemDecC,type);

case 3

% maximum of the credibility with reject

[Bel]=credibility(expertDec);

TabSing=[];

focTheta=[];

for i=1:size(Theta,2)

focTheta=union(focTheta,Theta{i});

end

for foc=1:nbFocal

if isElem(Bel.focal{foc}, elemDecC)
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TabSing=[TabSing [foc ; Bel.Bel(foc)]];

end

end

[BelMax,indMax]=max(TabSing(2,:));

if BelMax~=0

focMax=Bel.focal{TabSing(1,indMax)};

focComplementary=setdiff(focTheta,focMax);

if isempty(focComplementary)

focComplementary=[];

end

ind=findeqcell(Bel.focal,focComplementary);

if BelMax < Bel.Bel(ind)

% if ind is empty this is always false

decFocElem=0; % That means that we reject

else

if isempty(ind)

decFocElem=0; % That means that we reject

else

decFocElem.focal={Bel.focal{TabSing(1,indMax)}};

decFocElem.Bel=BelMax;

end

end

else

decFocElem=-1; % That means that we reject

end

case 4

% maximum of the plausibility

[Pl]=plausibility(expertDec);

decFocElem=MaxFoc(Pl,elemDecC,type);

case 5

% DSmP criterion

epsilon=0.00001; % 0 can allows problem

[DSmP]=DSmPep(expertDec,epsilon);

decFocElem=MaxFoc(DSmP,elemDecC,type);

case 6

% Appriou criterion

[Pl]=plausibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);
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Newbba=Pl.Pl.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Pl.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 7

% Credibility on DTheta criterion

[Bel]=credibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=Bel.Bel.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Bel.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 8

% pignistic on DTheta criterion

[BetP]=pignistic(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=BetP.BetP.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=BetP.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

otherwise

’Accident: in decision choose of criterion: uncorrect’

end

end

%%

function [bool]=isElem(focal, listFocal)

% The g oal of this function is to return a boolean on the test

% focal in listFocal

%

% [bool]=isElem(focal, listFocal)

%
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% Inputs:

% focal = one focal element (matrix)

% listFocal = the list of elements in Theta (all different)

%

% Output:

% bool = boolean: true if focal is in listFocal, elsewhere false

%

% Copyright (c) 2008 Arnaud Martin

n=size(listFocal,2);

bool=false;

for i=1:n

if isequal(listFocal{i},focal)

bool=true;

break;

end

end

end

%%

function [decFocElem]=MaxFoc(funcDec,elemDecC,type)

fieldN=fieldnames(funcDec);

switch fieldN{2}

case ’BetP’

funcDec.bba=funcDec.BetP;

case ’Bel’

funcDec.bba=funcDec.Bel;

case ’Pl’

funcDec.bba=funcDec.Pl;

case ’DSmP’

funcDec.bba=funcDec.DSmP;

end

if type

[funcMax,indMax]=max(funcDec.bba);

FocMax={funcDec.focal{indMax}};

else

nbFocal=size(funcDec.focal,2);

TabSing=[];

for foc=1:nbFocal

if isElem(funcDec.focal{foc}, elemDecC)
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TabSing=[TabSing [foc ; funcDec.bba(foc)]];

end

end

[funcMax,indMax]=max(TabSing(2,:));

FocMax={funcDec.focal{TabSing(1,indMax)}};

end

if funcMax~=0

decFocElem.focal=FocMax;

switch fieldN{2}

case ’BetP’

decFocElem.BetP=funcMax;

case ’Bel’

decFocElem.Bel=funcMax;

case ’Pl’

decFocElem.Pl=funcMax;

case ’DSmP’

decFocElem.DSmP=funcMax;

end

else

decFocElem=-1;

end

end

Function 12. - findFocal function

function [elemDecC]=findFocal(Theta,minSpe,maxSpe)

% Find the element of DTheta with the minium of specifity minSpe

% and the maximum maxSpe

%

% [elemDecC]=findFocal(Theta,minSpe,maxSpe)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint)

% of the elements of the discernment space

% minSpe = minimum of the wanted specificity

% minSpe = maximum of the wanted specificity

%

% Output:

% elemDec = list of elements on which we want to decide with the

% minimum of specifity minSpe and the maximum maxSpe
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%

% Copyright (c) 2008 Arnaud Martin

elemDecC{1}=[];

n=size(Theta,2);

ThetaSet=[];

for i=1:n

ThetaSet=union(ThetaSet,Theta{i});

end

for s=minSpe:maxSpe

tabs=nchoosek(ThetaSet,s);

elemDecC(end+1:end+size(tabs,1))=num2cell(tabs,2)’;

end

elemDecC=elemDecC(2:end);

Function 13. - pignistic function

function [BetP]=pignistic(expert)

% Generalized Pignistic Transformation

%

% [BetP]=pignistic(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% BetP = contains the structure of the list of focal elements and

% the matrix of the plausibility corresponding

% BetP.focal = list of focal elements

% BetP.BetP = matrix of the pignistic transformation

% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The pignistic is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%
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% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

BetP.focal=expert.focal;

BetP.BetP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

BetP.BetP(focA)=BetP.BetP(focA)+size(focI,2)/...

...size(expert.focal{focB},2)*expert.bba(focB);

else

if isequal(expert.focal{focB},[])

% for the empty set:

% cardinality(empty set)/cardinality(empty set)=1,

% so we add the bba

BetP.BetP(focA)=BetP.BetP(focA)+expert.bba(focB);

end

end

end

end

Function 14. - credibility function

function [Bel]=credibility(expert)

% Credibility function

%

% [Bel]=credibility(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% Bel = contains the structure of the list of focal elements and

% the matrix of the credibility corresponding

% Bel.focal = list of focal elements

% Bel.Bel = matrix of the credibility
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% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The credibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Bel.focal=expert.focal;

Bel.Bel=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

indMem=ismember(expert.focal{focB},expert.focal{focA});

if sum(indMem)==size(expert.focal{focB},2)...

&& ~isequal(expert.focal{focB},[])

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])...

&& isequal(expert.focal{focA},[])

% the empty set is included to all the focal elements

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

end

end

end

end

Function 15. - plausibility function

function [Pl]=plausibility(expert)

% Plausibility function

%

% [Pl]=plausibility(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba
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%

% Output:

% Pl = contains the structure of the list of focal elements and

% the matrix of the plausibility corresponding

% Pl.focal = list of focal elements

% Pl.Pl = matrix of the plausibility

% Comment : 1- the code of the focal elements must include

% the constraints

% 2- The plausibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Pl.focal=expert.focal;

Pl.Pl=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])...

&& isequal(expert.focal{focA},[])

% for the empty set we keep the bba for the Pl

Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

end

end

end

end

Function 16. - DSmPep function

function [DSmP]=DSmPep(expert,epsilon)

% DSmP Transformation

%

% [DSmP]=DSmPep(expert,epsilon)

%
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% Inputs:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

% epsilon = epsilon coefficient

%

% Output:

% DSmPep = contains the structure of the list of focal elements

% and the matrix of the plausibility corresponding

% DSmPep.focal = list of focal elements

% DSmPep.DSmP = matrix of the pignistic transformation

%

% Reference: Dezert & Smarandache, ’’A new probbilistic

% transformation of belief mass assignment’’,

% fusion 2008, Cologne, Germany.

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

DSmP.focal=expert.focal;

DSmP.DSmP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

sumbbaFocB=0;

sFocB=size(expert.focal{focB},2);

for elB=1:sFocB

ind=findeqcell(expert.focal,expert.focal{focB}(elB));

if ~isempty(ind)

sumbbaFocB=sumbbaFocB+expert.bba(ind);

end

end

if ~isempty(focI)

sumbbaFocI=0;

sFocI=size(focI,2);

for elB=1:sFocI

ind=findeqcell(expert.focal,focI(elB));

if ~isempty(ind)

sumbbaFocI=sumbbaFocI+expert.bba(ind);

end
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end

DSmP.DSmP(focA)=DSmP.DSmP(focA)+expert.bba(focB)...

...*(sumbbaFocI+epsilon*sFocI)/...

...(sumbbaFocB+epsilon*sFocB);

end

end

end

7.5.4 Decoding and generation of DΘ
r

For the displays, we must decode the focal elements and/or the final decision. The
function 17 decodes the focal elements in the structure expert that contains normally
only one expert. This function calls the function 18 that really does the decoding for
the user. This function is based on the generation of DΘ

r given by the function 21
that is a modified and adapted code from [11]. To generate DΘ

r we first must create
the intersection basis. Hence in the function 18 we use a loop of 2Θ in order to
generate the basis and at the same time to scan the power set 2Θ and also the
elements of the intersection basis. These two basis (intersection and union) are in
fact concatenated during the construction, so we scan also some elements such as
intersections of previous unions and unions of previous intersections. This generated
set of elements does not cover DΘ

r . When all the searching focal elements (that can
be only one decision element) are found, we stop the function and avoid to generate
all DΘ

r . Hence if the searching elements are not all found after this loop, we begin to
generate DΘ

r and stop when all elements are found. So, with luck, that can be fast.
We can avoid to generate DΘ

r for only the display if we use Smarandache’s codifi-
cation. The function 19 transforms the used code of the focal elements in the structure
expert in Smarandache’s code, easier to understand by reading. This function calls
the function 20 that really does the transformation. The focal elements are directly
in string for the display.

Function 17. - decodingExpert function

function [expertDecod]=decodingExpert(expert,Theta,DTheta)

% The goal of this function is to decode the focal elements in

% expert

%

% [expertDecod]=decodingExpert(expert,Theta)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% (generally use for only one after combination)

% Theta = list of coded (and reduced with constraint) of the



Chapter 7: Implementing general belief function framework . . . 265

% elements of the discernement space

% DTheta = list of coded (and reduced with constraint) of the

% elements of DTheta

%

% Output:

% expertDecod = contains the structure of the list of decoded

% (for human) focal elements and corresponding bba for

% all the experts

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=decodingFocal(focal,{’A’},Theta,...

...DTheta);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 18. - decodingFocal function

function [focalDecod]=decodingFocal(focal,elemDec,Theta,DTheta)

% The goal of this function is to decode the focal elements

%

% [focalDecod]=decodingFocal(focal,elemDec,Theta)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% elemDec = the description of the subset of uncoded elements

% for decision

% Theta = list of coded (and reduced with constraint) of the

% elements of the discernement space

% DTheta = list of coded (and reduced with constraint) of the

% elements of DTheta, eventually empty if not necessary

% Output:

% focalDecod = contains the list of decoded (for human) focal

% elements

%

% Copyright (c) 2008 Arnaud Martin
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switch elemDec{1}

case {’F’,’A’,’SF’,’Cm’}

opt=1;

case ’S’

opt=0;

elemDecC=Theta;

for i=1:size(Theta,2)

elemDec(i)={[i]};

end

case ’2T’

opt=0;

natoms=size(Theta,2);

elemDecC(1)={[]};

elemDec(1)={[]};

step =2;

for i=1:natoms

elemDecC(step)=codingFocal({[i]},Theta);

elemDec(step)={[i]};

step=step+1;

indatom=step;

for step2=2:indatom-2

elemDec(step)={[elemDec{step2} -1 ...

...elemDec{indatom-1}]};

elemDecC(step)={[union(elemDecC{step2},...

...elemDecC{indatom-1})]};

step=step+1;

end

end

otherwise

opt=0;

elemDecN=string2code(elemDec);

elemDecC=codingFocal(elemDecN,Theta);

end

if ~opt

sFoc=size(focal,2);

for foc=1:sFoc

[ind]=findeqcell(elemDecC,focal{foc});

if isempty(ind)

’Accident in decodingFocal: elemDec does not be 2T’

pause

else
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focalDecod(foc)=elemDec(ind);

end

end

else

focalDecod=cell(size(focal));

cmp=0;

sFocal=size(focal,2);

sDTheta=size(DTheta.c,2);

i=1;

while i<sDTheta && cmp<sFocal

DThetai=DTheta.c{i};

indeq=findeqcell(focal,DThetai);

if ~isempty(indeq)

cmp=cmp+1;

focalDecod(indeq)=DTheta.s(i);

end

i=i+1;

end

end

Function 19. - cod2ScodExpert function

function [expertDecod]=cod2ScodExpert(expert,Scod)

% The goal of this function is to code the focal elements in

% expert with the Smarandache’s codification from the practical

% codification in order to display the expert

%

% [expertDecod]=cod2ScodExpert(expert,Scod)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% (generally use for only one after combination)

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% expertDecod = contains the structure of the list of decoded

% (for human) focal elements and corresponding bba

% for all the experts

%

% Copyright (c) 2008 Arnaud Martin
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nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=cod2ScodFocal(focal,Scod);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 20. - cod2ScodFocal function

function [focalDecod]=cod2ScodFocal(focal,Scod)

% The goal of this function is to code the focal elements with

% the Smarandache’s codification from the practical codification

% in order to display the focal elements

%

% [focalDecod]=cod2ScodFocal(focal,Scod)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% focalDecod = contains the list of decoded (for human) focal

% elements

%

% Copyright (c) 2008 Arnaud Martin

sFocal=size(focal,2);

for foc=1:sFocal

sElem=size(focal{foc},2);

if sElem==0

focalDecod{foc}=’{}’;

else

ch=’{’;

ch=strcat(ch,’<’);

ch=strcat(ch,num2str(Scod{focal{foc}(1)}));

ch=strcat(ch,’>’);

for elem=2:sElem

ch=strcat(ch,’,<’);

ch=strcat(ch,num2str(Scod{focal{foc}(elem)}));
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ch=strcat(ch,’>’);

end

focalDecod{foc}=strcat(ch,’}’);

end

end

Function 21. - generationDThetar function

function [DTheta]=generationDThetar(Theta)

% Generation of DThetar: modified and adapted code from

% Dezert & Smarandache Chapter 2 DSmT book Vol 1

% to generate DTeta

%

% [DTheta]=generationDThetar(Theta)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint)

% of the elements of the discernment space

%

% Output:

% DTheta = list of coded (and eventually reduced with constraint

% in this case some elements can be the same) of the

% elements of the DTheta

%

% Copyright (c) 2008 Arnaud Martin

n=size(Theta,2);

step =1;

for i=1:n

basetmp(step)={[Theta{i}]};

step=step+1;

indatom=step;

for step2=1:indatom-2

basetmp(step)={intersect(basetmp{indatom-1},...

...basetmp{step2})};

step=step+1;

end

end

sBaseTmp=size(basetmp,2);

step=1;

for i=1:sBaseTmp

if ~isempty(basetmp{i})
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base(step)=basetmp(i);

step=step+1;

end

end

sBase=size(base,2);

DTheta{1}=[];

step=1;

nbC=2;

stop=0;

D_n1 =[0 ; 1];

sDn1=2;

for nn=1:n

D_n =[ ] ;

cfirst=1+(nn==n);

for i =1:sDn1

Li=D_n1(i,:);

sLi=size(Li,2);

if (2*sLi>sBase)&& (Li(sLi-(sBase-sLi))==1)

stop=1;

break

end

for j=i:sDn1

Lj=D_n1(j,:);

if(and(Li,Lj)==Li)&(or(Li,Lj)==Lj)

D_n=[D_n ; Li Lj ] ;

if size(D_n,1)>step

step=step+1;

DTheta{step}=[];

for c=cfirst:nbC

if D_n(end,c)

if isempty(DTheta{step})

DTheta{step}=base{sBase+c-nbC};

else

DTheta{step}=union(DTheta{step},...

...base{sBase+c-nbC});

end

end

end

end

end

end
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end

if stop

break

end

D_n1=D_n;

sDn1=size(D_n1,1);

nbC=2*size(D_n1,2);

end
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