
User Interface Design Smell: Automatic
Detection and Refactoring of Blob Listeners

Arnaud Blouin, Valéria Lelli, Benoit Baudry, Fabien Coulon

DiverSE research group
Inria / IRISA, Rennes, France

2

On (UI) code quality

Bugs

● Crashes

● Errors

● Incorrect behaviours

Code/Design smells

Bad coding practices / design
– May have negative impact:

readability, understandability,
maintainability, etc.

– Examples:
● long method (between 100

and 150 LoCs)
Makes use of code metrics

● Rules: “Code blocks
without parentheses are
forbidden”

if (g != null)
 paintScrollBars(g,colors);
g.dispose();

if (g != null) {
 paintScrollBars(g,colors);
 g.dispose();

}

3

Evaluating code quality

Automated code analysis tools
E.g. for object-oriented prog. (OOP):

Findbugs, PMD

Code metrics
– # of methods / class

– # LoC / method

– etc

|WTF| > 2 => bad code

4

Analysing user interface code

● Can apply Findbugs on UI code

● Can find OO design smells in UI code

● Many works on OOP code analysis, design smell, code
metrics (Rasool2015)

=> To find object-oriented issues only

5

Analysing user interface code

What about specific UI elements that compose UI code?
– UI listeners, UI commands, data binding, MV* patterns, UIDL documents,

widgets, etc.

Do these UI elements have specific issues, code smells?
– Is there specific errors, bad coding practices when coding undo/redo,

data binding, UI listeners, UI commands?

– How can we detect them?

– Do they have a negative impact on the code quality?

6

Contributions of this work

● An empirical study that focuses on how developers code UI
listeners

● The characterisation of a UI design smell that affects UI
listeners: Blob Listener

● A UI code analysis technique to detect Blob Listeners deeply
intertwined with the rest of the code

● A behaviour-preserving code refactoring solution to remove
Blob listeners

7

What are UI listeners and commands?

UI command: code executed in reaction of a user action on a widget

UI listener method: method called on user actions

8

UI listeners that use “if” statements

Identification of the widget that produced the event

These listeners manage several
widgets

9

InspectorGuidget:
a tool for detecting UI commands

● Requires a specific code analysis technique

– Counting the # of “if” is not precise enough

– Mandatory to refactor code

● Java toolkits supported (Swing, JavaFX, SWT)

● Based on Spoon, a Java code analysis framework

● Open-source: https://github.com/diverse-project/InspectorGuidget

https://github.com/diverse-project/InspectorGuidget

10

Detecting UI commands

● Detection of UI listener methods
– Have a UI event as a parameter

● Command = code block surrounded by a condition that uses
(un-)directly a widget

● No condition = 1 command

11

Detecting UI commands: evaluation

12

Detecting UI commands: evaluation

● Recall: 99.43%

● Precision: 95.73%

Ground-truth = manual inspection of the UI listeners to identify the commands

13

Studying the coding practice
“several commands per listener”

Does this coding practice has an negative impact on the
code quality?

– RQ1: has an impact on fault-proneness of the UI listener code?

– RQ2: has an impact on change-proneness of the UI listener
code?

– RQ3: Does a threshold value that can characterize a UI design
smell exist?

14

Empirical study

Evaluate negative impact: # of commands managed by a
listener

– Change-proneness: # of commits per UI listener

– Fault-proneness: # of fault fixes per UI listener
● Bug fixes: commits that contains specific words (“fix”, etc.)
● Done manually

– Requires apps with code history (Git)

15

RQ1: # of commands per listener has
an impact on fault-proneness?

● Significant increase of fault fixes for 3+ commands per listener

– Cohen’s d = 0.81 (large), p-value<0.001

● Moderate correlation (0.43)

16

RQ2: # of commands per listener has an
impact on change-proneness?

● Increase of changes at 3+ commands per listener

– Cohen’s d = 0.5323 (medium), not significant (p-value = 0.0564)

● Moderate correlation (0.35)

17

RQ3: Is there a threshold value that can
characterize a UI design smell?

● Feedback from developers:

– They confirm the bad coding practice

– 2 seems a good threshold, but may raise many false positives

=> We define the threshold at 3 commands per listener

(of course: the threshold value is customisable)

18

Refactoring Blob listeners

Blob Listener: A UI design smell for listener methods that can
produce 3 or more UI commands

19

Refactoring Blob listeners

Specific code analysis to find the widgets associated to UI commands

Widget identification: using string literals, variables, etc. used in (nested)
conditional statements

20

Refactoring Blob listeners

Code refactoring solution to move the UI commands

21

Refactoring Blob listeners

Not possible for all UI commands (49 % of the Blob listeners refactored)

22

Feedback from developers
regarding Blob listeners

Patches submitted to JabRef, Eclipse, Freecol, and ArgoUML

Patches accepted and merged: JabRef, Freecol

Eclipse: discussions on the patches started, positive feedback, and then… no news

ArgoUML: a dead project?

23

Feedback from developers
regarding Blob listeners

“I like it when the code for defining a UI element and the code for interacting with it are close
together. So hauling code out of the action listener routine and into a lambda next to the point
a button is defined is an obvious win for me.”

“It does not strictly violate the MVC pattern. […] Overall, I like your solution”

"there might be situations where this can not be achieved fully, e.g. due to limiting
implementations provided by the framework."

“It depends, if you refactor it by introducing duplicated code, then this is not suitable and
even worse as before”

24

Conclusions
● The characterisation of the Blob Listener design smell: 3+ commands per

listener

● InspectorGuidget: an open-source tool that detects and refactors Blob listeners

https://github.com/diverse-project/InspectorGuidget

● Empirical studies on UI code are not easy to conduct:

– have to find relevant software systems with UIs (+1 for JabRef and Freecol)

– UI testing: no or small UI test suites

– Code analyses may strongly depend on the UI toolkits

● Static code analyses to:

– improve UI testing techniques

– Amplify UI test suites

● Design smell in data bindings

Research Agenda

https://github.com/diverse-project/InspectorGuidget

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

