GREEN ICT

Anne-Cécile Orgerie

IRISA 😳 🐼 Inia INSA

Lecture, Telecom SudParis 9th October 2020

Who I am

- Full-time researcher at CNRS (about 33,000 people)
- · Located in Rennes, France.
- IRISA laboratory (about 1,000 people)
- Myriads team: INRIA, CNRS, University of Rennes, INSA, ENS Rennes (about 30 people)
- Energy efficiency in large-scale distributed systems

http://www.people.irisa.fr/Anne-Cecile.Orgerie

Green Computing?

3

"Designing, manufacturing, using, and disposing of computers, servers, and associated subsystems -- such as monitors, printers, storage devices, and networking and communications systems -- efficiently and effectively with minimal or no effect on the environment.'

Sam Murugesan, "Harnessing Green IT: Principles and Practices" IEEE IT Professional, 2008.

- Green use: reduce usage of hazardous materials ٠
- Green design: design compliant with the environment
- Green disposal: recycling e-waste with little impact
- Green manufacturing: new products without hazardous substances

Anne-Cécile Orgerie

Outline

I. Introduction to (not) green ICT

- II. Trails to green ICT from my research point of view
 - A. Green computing history
 - B. Data center level
 - C. Measuring energy consumption
 - D. Slowing down
 - E. Switching off unused resources
 - F. Efficient scheduling
 - G. Exploiting renewable energy

III. Concluding remarks

Anne-Cécile Orgerie

ICT impact?

- What is ICT carbon impact in comparison with global impact?
- What is carbon impact?
- Which part of the lifecyle of an ICT product has more carbon impact?

https://app.klaxoon.com/join/VNCJ9JX

Computing in the 21st century?

Anne-Cécile Orgerie

ICT energy consumption

10

Rapport Lean ICT : Pour une sobriété Numérique, 2018, <u>https://theshiftproject.org</u>. Cisco Visual Networking Index: Forecast and Methodology [2013—2019]. World Population: Fast, Present, and Future https://www.worlddwartes.info/world-population 2019. International Telecommunication Union, Measuring the Information Society Report, 2018. Anne-Cécelle Orgerie

<section-header> Cloud computing in through networks to on-demand the service, configurable, shared computing resources through networks to on-demand the services configurable, shared computing resources the services configurable to the services configurable to the services configurable. • Mutualization of services configurable to the services configurable to the services configurable. • Mutualization of services configurable to the services configurable to the services configurable to the services configurable. • Mutualization of services configurable to the services configurable to the services configurable. • Mutualization of services configurable. • Mutualization of services configurable to the services configurable. • Mutualization of services configurable. • Mutualization of services configurable to the services configurable to the services configurable.

Resource waste

Daily aggregated traffic on AMS-IX(Amsterdam Internet eXchange Point), October 2020. Anne-Cécile Orgerie 11

Practical Internet of Things

http://www.supinfo.com/articles/single/4235-internet-of-things Anne-Cécile Orgerie

Anne-Cécile Orgerie

[Source : https://www.google.fr/about/datacenters]

One Google Data Center (Dalles)

https://www.google.com/about/datacenters/inside/locations/the-dalles/

15

UPS to the rescue

Uninterruptible power supply:

- Emergency power system Used to protect hardware from
- power disruption
- Supplies energy stored in batteries, supercapacitors of flywheels (converted into alternating current)

But only for few minutes!

And then?

Engine-generator

OVH example

Roubaix site: ~ 10,000 servers

8 MVA at max: 1,600L/h of oil

Tests: every 2-3 weeks

https://lafibre.info/ovhdatacenter/test-degroupes/ Anne-Cécile Orgerie

http://www.datacenter om/blog/d

https://news.microsoft.com/features/ microsoft-research-project-puts-cloud-in-ocean-for-the-first-time/#sm. 0000q5ts4lqgfez110wem1gb0ig5o

Anne-Cécile Orgerie

Distribution of ICT energy consumption

Rapport Lean ICT : Pour une sobriété Numérique, 2018 https://theshiftproject.org Anne-Cécile Orgerie

CO2 is a different metric

"ICT - Energy Concepts for Energy Efficiency and Sustainability", G. Fagas, L. Gammaitoni, J. Gallagher and D. Paul, InTech (open) book, 2017. Anne-Cécile Orgerie

But globally, it provides the same THE SHIFT PR JECT message

Anne-Cécile Orgerie

Green computing history

Anne-Cécile Orgerie

- Energy Star: international standard for energy efficient consumer products
 - 1992, USA ٠
 - Voluntary labeling program
 - To promote energy-efficient monitors, climate control equipment and other technologies
 - Main result: sleep mode
- TCO certification
- 1992, Sweden
- To promote low magnetic and electrical emissions
- from CRT-based computer displays

Anne-Cécile Orgerie

27

Anne-Cécile Orgerie

- Power factor of 0.9 or greater at 100% load 80 Plus Titanium : 90% energy efficient RoHS: Restriction of Hazardous Substances
- Directive (2003):
- Adopted in 2003, effective in 2006 in EU
- Restricted use of six materials

Specific eco-labels

Outline of my research work

- 1. Data center level
- 2. Understanding energy consumption
- 3. Slowing down
- 4. Switching off unused resources
- 5. Consolidation the load
- 6. Exploiting virtualization capabilities
- 7. Consuming renewable energy
- Networking equipment

Data center level

29

80

Data Center J. Ni and X. Bai, "A Review of Air Conditioning Energy Performance in Data Centers", 2017

Great part consumed by facilities

 \rightarrow Cooling accounts for 30-50% of the total value Anne-Cécile Orgerie

32

34

https://www.datacenterknowledge.com/ archives/2012/12/11/defensedepartment-cool-servers-with-hot-water

· Water-based cooling

Anne-Cécile Orgerie

31

Let's reduce the heat

· Oil-based cooling

Anne-Cécile Orgerie

Green Revolution Cooling, https://www.grcooling.com 33

Let's reduce the heat

https://www.google.com/about/datacenters/inside/locations/hamina/

Water-cooled doors

Exploded View of Chilled Door

https://www.monman.com/motivair-chilled-door-rack-cooling-details 35 Anne-Cécile Orgerie

Anne-Cécile Orgerie

Anne-Cécile Orgerie

Water required!

Water pipes

Anne-Cécile Orgerie 37

Thermal management

Cooling costs a lot, so reduce heat Power Con production to reduce energy consumption

"Energy Aware Grid: Global Workload Placement based on Energy Efficiency", HP Technical Report, 2002. "Power Provisioning for a Warehouse-sized Computer", X. Fan, W. Weber and L. Barroso, ISCA, 2007. Anne-Cécile Orgerie

Understanding energy consumption

- · Mandatory to optimize the energy consumption of a resource or an application
- Mandatory to simulate or emulate energy consumption
- · Other usages:
 - monitoring,
 - forecasting,
 - accounting...

Anne-Cécile Orgerie

39

41

How to measure energy consumption?

- Power usage per device, per process, per service, per rack?
- Software tools: powertop
- Event counters
- Sensors

Anne-Cécile Orgerie

"Balancing power consumption in multiprocessor systems", A. Merkel and F. Bellosa, SIGOPS Oper. Syst. Rev., 2006.

Anne-Cécile Orgerie

Intel Power Gadget

Anne-Cécile Orgerie

40

Understanding energy consumption

Without wattmeters

PAPI (Performance Application Programming Interface) can read RAPL (Running Average Power Limit) values

Uses software power model, hardware performance counters, temperature, leakage models and I/O models

With an example: Grid'5000

- · French experimental testbed
- 15,000 cores
- 8 sites

Anne-Cécile Orgerie

- · Dedicated Gb network
- · Designed for research on large-scale parallel and distributed systems

44

A monitored site: Lyon

• 50 power measurements per node and per second

· Multiple views + logs on demand

		The state of the state of the state
sagittaire-8: 184.12 Watts	sagittaire-9: 167.25 Watts	sagittaire-10: 198.12 Watts
Berg complete of applicate \$ - Not	Dwig complian of applicants - more	Berg crossics of agricovic rear
		. 5
* I	1 2	1.5
And an in the street of the	And and all the still the still	the at the st. the st.
sagittaire-14: 218.75 Watts	sagittaire-15: 202.75 Watts	sagittaire-16: 198.75 Watts
Burg consection of septembers (4 - New	Burg crospin of september in the	Burg cradplat of septions of the
	11.5	1 2
18	18	1 8
Real and ALL Real and the state	Rath Mart 2013 - No. 10.1 - No. 2013	Real And Bld. Real State Sec. 1.
sagittaire-20: 173.88 Watts	sagittaire-21: 173.50 Watts	sagittaire-22: 172.50 Watts
Berg crashin of apilairs (0 - Neur m ²	Burg complete of agiliate 2 - Nor	Burg conspice of agritude () income
1 2	1. 2	1 2
· -	· -	· -
Anna and the second for the	Anno 1911 Mar 1911 Mar 1913 - Mar 1915	Real Property and the second second
sagittaire-26: 229.88 Watts	sagittaire-27: 234.38 Watts	sagittaire-28: 215.75 Watts
and onesting a spinors a new	Bergi creation of agencies of a sec	therp converter of septrors at the
(=	(B	1.5
1 =	1.3	1 2
And and Mar. Soc. M.J. Soc. M.J.	Party Mart 20.3 - No. 10.7 - No. 20.3	Real and 20.1 Rev. 10.1 Rev. 10.1
sagittaire-32: 205.88 Watts	sagittaire-33: 196.88 Watts	sagittaire-34: 198.88 Watts

45

47

Anne-Cécile Orgerie

N°1: Fugaku (TOP500 June 2020) 415 Petaflops, 28.335 MW, 7,299,072 cores,

 $\label{eq:hyperbolic} https://spectrum.ieee.org/tech-talk/computing/hardware/japans-fugaku-supercomputer-is-first-in-the-world-to-simultaneously-top-all-high-performance-benchmarks$

- Typical applications:
- Artificial intelligence Disaster-prevention simulations

Anne-Cécile Orgerie . . .

ank	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/0Ak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783
	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.20Hz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
	Piz Daint - Cray XC50, Xeon E5-2690x3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
	http://www.top500).org. Top	500 list.	Novem	ber 2

Top500

Anne-Cécile Orgerie

48

300	, boot	1	. idle .	hdparm	· iperf	cpuburn	stress	<u>halto</u>
250	prohing	mh	M		ſ	<u>۲</u>		hay
200 ····								
150								
- 100								
50								
Ļ		100		200	<u> </u>	100	400	Ļ
00		100		200 Time	(seconds)	000	400	

Variable workload & non-power proportionality

Anne-Cécile Orgerie

Courtesy of David Guyon 55

PUE as a selling point: Google case

Energy cost of an Internet box?

https://www.facebook.com/ForestCityDataCenter/app_288655784601722 Anne-Cécile Orgerie 59

Energy cost in Joules/bit:

When the bow is idle, it consumes15 Watts

- At 8am, 15.15 Watts and 0.65 Mbps
- At 8pm, 16.05 Watts and 4.75 Mbps
- At max, 25 Watts and 60 Mbps

Efficiency of an Internet box

Internet energy intensity

Study	Method	System boundary	Data for	Energy intensity		
		Networking equipment	Optical fibers	End devices		
(oomey et al. (2004)	Top-down	x	x	x	2000	<136 kWh/GE
aylor and Koomey (2008)	Top-down	x	х	х	2006	8.8-24.3 kWh/GI
Weber et al. (2010)	Top-down	х	х	х	2008	7 kWh/Gl
Pickavet et al. (2008)	Top-down	x	х		2008	1.8 kWh/Gi
anzisera et al. (2012)	Top-down	x			2008	0.39 kWh/G
Baliga et al. (2007)	Model-based	x	х		2007	0.7-2.1 kWh/G
Baliga et al. (2009)	Model-based	х	х		2008	>0.179 kWh/G
Baliga et al. (2011)	Model-based	х	х		2011 (?)	0.006 kWh/G
ichien et al. (2012)	Bottom-up	х	х		2009	0.057 kWh/G
foroama et al. (2013)	Bottom-up	x	х		2009	<0.2 kWh/G

by up to four orders of magnitude — from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/ GB."

Anne-Cécile Orgerie

Anne-Cécile Orgerie

"Assessing Internet energy intensity: A review of methods and results", V. Coroama, L. Hilty, Environmental Impact Assessment Review, 2014.

62

Standards, Consortiums, Projects

•

the green grid

EFFICIENT-SERVERS

Energy Star .

- Green Grid
- Efficient Servers
- The green 500

Slowing down

Power modes by component - On - Off ork car

Dynamic adaptation to the load:

- Hard disks: spin-down
- Processors: Dynamic Voltage Frequency Scaling (DVFS)
- Network cards: Adaptive Link Rate

63

CPU-Level DPM Busy Idle Idle Time Slice Time Slice Time Slice

DVFS principle

66

Simulating energy consumption of applications

Simulating energy consumption

Switching off unused resources

0 0 0 C Switching off

Idea: adapt the set of active resources to the load

Issues:

- Does it reduce the life time of resources?
- How to switch resources on again?
- How much time does it take to switch?
- Switch off or sleep?
- Does the middleware consider the resources as dead?

Anne-Cécile Orgerie

[&]quot;Demystifying Energy Consumption in Grids and Clouds ", A.-C. Orgerie et al., WIPGC, 2010.

Anne-Cécile Orgerie

73

On/off tools

- Suspend to disk (hibernation)
- Suspend to RAM (standby or sleep)
- Wake on LAN
- IPMI (Intelligent Platform Management Interface)
- Presence proxies
- Smart PDU (Power Distribution Unit)

Anne-Cécile Orgerie

Energy-efficient scheduling to switch off more resources

4 servers

Tasks

74

76

78

Anne-Cécile Orgerie

Consolidation in space

Consolidation in time

Consolidation in space & time

Virtualization

Exploiting live-migration capabilities

Idea: migrating virtual machines to consolidate the load on the fewer number of physical resources

Anne-Cécile Orgerie

Grids, Clouds and Virtualization, Springer, 2010.

Infrastructure level & renewable energy

89

Anne-Cécile Orgerie

72 84 96 108 120 Time (Hour) "Opportunistic Scheduling in Clouds Partially Powered by Green Energy", Y. Li, A.-C. Orgerie and J.-M. Menaud, GreenCom 2015. 90

132

144

108 120 132

Opportunistic scheduling

72 84 96 Time (Hour)

nistic scheduling algorithm

48 60

60

48

24 36 USED ENERGY PIKA Oppo

USED ENERGY GREEN ENERGY

1200

400

120 consumption (Wh) 1000 800 600 nerav

Energy consumption (Wh) 10000 800 6000

Real infrastructure: Parasol

Figure 1. (a) Outside view of Parasol. (b) Parasol's power distribution and monitoring infrastructure.

Anne-Cécile Oraeri

http://parasol.cs.rutgers.edu

92

A real example

Apple's North Carolina iCloud data center

40 MW (max) of power

Renewable energy

- two 20 MW and one 18 MW solar arrays
- one 10 MW biogas fuel cells
- producing 244 million kWh annually
- daily on-site production: 60-100% of facility's consumption

Around 450 acres (1,800,000 m²) needed for solar farms
Anne-Cécile Orgerie 93

Apple Environmental Responsibility Report 2016

Apple (worldwide)Apple (U.S.)

Apple data centers are powered by 100 percent renewable energy.

In just six years, Apple's use of renewable energy to power its corporate facilities, retail stores, and data centers worldwide went from 16 percent in 2010 to 96 percent in 2016.

https://images.apple.com/environment/pdf/Apple_Environmental_Responsibility_Report_2017.pdf
Anne-Cécile Orgerie 94

The Truth About Apple's '100% Renewable' Energy Usage Alex Epstein, Forbes, January 2016.

http://tinyurl.com/yc3r7c73

Apple pays off consumers and other companies to give it 'green credits' for its coal electricity usage

Conclusions

State of the art

Computing resources

Sources of energy waste

Complex tradeoffs and modularity

System design is full of complex tradeoffs

- Peak vs. average performance
- Peak vs. average load
- General-purpose vs. dedicated
- High vs. best effort availability
- Backward compatibility •
- System functionality as independent modules
- Modularity and interaction
- System components designed separately (CPU, network interface...)

100

Performance and general purpose

Optimization for peak performance scenario

- Low average system utilization •
 - Benchmarks stress worst-case performance workloads
 - Systems optimized for these scenarios ٠

Good performance for a multitude of different applications

- Union of maximum requirements of each application class
- E.g. smartphone vs. MP3 player
- Legacy solutions

Anne-Cécile Orgerie

Anne-Cécile Orgerie

Anne-Cécile Orgerie

99

60

101

Courtesy of Simin Nadjm-Tehrani

Growth and availability

- Overprovisioning to plan for the future ٠
 - Ensure enough capacity
- Redundancy to increase availability

Anne-Cécile Orgerie

Design process structure

- · Hardware and software separately
- Divided system functionality across components
- Layers
 - · Local optimizations not optimal for global efficiency
 - E.g. worst-case assumption at each layer

Anne-Cécile Orgerie

103

Energy efficiency at design stage

- · Replacement with a more power-efficient alternative
- Holistic solutions

Anne-Cécile Orgerie

- · Look at problem with broad scope
- Cross-layer interaction
- · Optimize energy efficiency for the common case
- · Design only for required functionality and requirements

-			
- 2	/		_
	R	cip	28
		- <u> </u>	
- 2			
	_		

104

Energy efficiency at runtime

- · Trade off some other qualities for energy
- Disable or scale down unused resources
- · Combination of multiple tasks in a single energy event
- · Spend someone else's power
- · Spend power to save power
- · Monitor energy consumption to be energy-aware
- · Predict resource usage trends
- Control algorithms and policies

00

Anne-Cécile Orgerie

ICT for Green

- Use ICT technologies to reduce the environmental footprint of other processes and sectors
- E.g. smart grids, smart buildings, etc.
- Green ICT
 - · Reduction of the ICT's environmental footprint
 - E.g. energy-aware data centers

In 2017: 5 connected devices / person 20 billion devices worldwide.

Forrester Research, "Connected devices forecast, 2012 to 2017", white paper, 2013. Anne-Cécile Orgerie

To go a bit further

108

In 2017: 5 connected devices / person 20 billion devices worldwide.

Forrester Research, "Connected devices forecast, 2012 to 2017", white paper, 2013. Anne-Cécile Orgerie 109

Are we going on the good way?

- New functionalities

- Create new practices and needs
- Multiplication of the devices
- Capability overlap
- Health issues

Anne-Cécile Orgerie

Complete life-cycle

1.4 billion smartphones sold in 2015.

Average life duration of firsthand smartphones < 2 years in 2015.

A. Scarsella, W. Stofega, "Worldwide Smartphone Forecast Update , 2015-2019", IDC report, 2015.

Durability and life cycle

User = person responsible

Bloatware Obsolescence

In 2014, on average, 35 applications installed per smartphone, among which: 11 are used every week and 12 are never used.

Anne-Cécile Orgerie

7GB per hour

Video games purshased on download Do not fit on DVD any more Network-hungry

101GB download

[Source : Sandvine, The Global Internet Phenomena Report, 2018.] Anne-Cecile Orgene

What you can do

What else?

· Completely switch off unused devices

- Remove unused applications
- Erase useless (old) emails, photos, etc.
- Be careful when sending emails (attachments, receivers)
- Be careful when coding (image size, active loops, etc.)
- · Look at eco-labels when buying new equipment
- Keep devices longer if they are still working
- Avoid capability overlap
- Stay energy-aware...

Anne-Cécile Orgerie

Anne-Cécile Orgerie

115

117

119

Opportunities

- · To think differently
- To propose new things
- · To build differently
- To design a sustainable future

<section-header><complex-block><complex-block><complex-block>

http://people.irisa.fr/Anne-Cecile.Orgerie

