
1 2 3 4

DRYADEPARENT, an efficient and robust closed
attribute tree mining algorithm

Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara,
Takashi Washio and Hiroshi Motoda

Abstract

In this paper, we present a new tree mining algorithm, DRYADEPARENT, based on the hooking principle first
introduced in DRYADE. In the experiments, we demonstrate that the branching factor and depth of the frequent
patterns to find are key factors of complexity for tree miningalgorithms, even if often overlooked in previous work.
We show that DRYADEPARENT outperforms the current fastest algorithm, CMTreeMiner, by orders of magnitude
on datasets where the frequent tree patterns have a high branching factor.

Index Terms

Data mining, mining methods and algorithms, mining tree structured data.

I. INTRODUCTION

I N the last ten years, the frequent pattern discovery task of data mining has expanded from simple
itemsets to more complex structures: for example sequences[1], episodes [2], trees [3] or graphs [4],

[5]. In this paper we focus ontree mining, that is finding frequent tree-shaped patterns in a databaseof
tree-shaped data. Tree mining can lead to many practical applications in the areas of computer networks
[6], bioinformatics [7], [8], XML documents databases mining [9], [10], and hence have received a lot of
attention from the research community in recent years. Mostof the well-known algorithms use the same
generate-and-test principle that made the success of frequent itemset algorithms. The main adaptation to
the tree case is the design of efficient candidate tree enumeration algorithms in order to avoid generating
redundant candidates, and to enable efficient pruning. However, the search space of tree candidates is huge,
particularly when the frequent trees to find have both high depth and high branching factor. Especially
the high branching factor case has received very little attention by the tree mining community. However,
performances of existing algorithms are dramatically affected by the branching factor of the tree patterns
to find, as shown in our experiments.

Starting from this observation, we have developed the DRYADEPARENT algorithm. This algorithm is
an adaptation of our earlier algorithm DRYADE [11]. DRYADE is based on a more general tree inclusion
definition appropriate for mining highly heterogeneous collections of tree data. DRYADEPARENT follows
the same principles of DRYADE, but uses a standard inclusion definition [12], [13] to make possible
performance comparison with other existing systems based on different principles. We will show in this
paper that DRYADEPARENT outperforms the up-to-date CMTreeMiner algorithm [13], and conduct a
thorough study on the influence of structural characteristics of the tree patterns to find, like depth and
branching factor, on the computation time performance of both algorithms.

The outline of the paper is as follows. Section II introducesthe notations and definitions used throughout
the paper. Section III presents and discusses the state of the art in tree mining. Section IV gives an overview

Alexandre Termier and Marie-Christine Rousset are with theLIG, University of Grenoble, 681 rue de la Passerelle, BP 72,38402 St
Martin d’Heres Cedex, France. Contact author e-mail:{Alexandre.Termier@imag.fr}. This work was realized while A. Termier was at Osaka
University in the former team of Pr. Hiroshi Motoda.

Michèle Sebag is with the CNRS & Université Paris-Sud (LRI) & INRIA (Futurs), Building 490, Université Paris-Sud, 91405 Orsay
Cedex, France.

Kouzou Ohara and Takashi Washio are with the I.S.I.R., OsakaUniversity, 8-1, Mihogaoka, Ibarakishi, Osaka, 567-0047,Japan.
Hiroshi Motoda is with the AOARD/AFOSR, Air Force Research Laboratory, 7-23-17 Roppongi, Minato-ku, Tokyo 106-0032, Japan.

of the DRYADEPARENT algorithm. Section V reports detailed comparative experiments, both on real and
artificial datasets, as well as an application example with XML data. In section VI, we conclude and give
some directions for future work.

II. FORMAL BACKGROUND

Intuitively, the objective task of the DRYADEPARENT algorithm that we present in this paper is, given
a set of trees and an arbitrary thresholdε, to discover the biggest tree sub-structures common to at leastε
trees of the input set of trees. This is illustrated in the example of Fig. 1. The sub-structureCS containing

A

B

E

F

G J

I K

L

H

D C

B

C D

B

C D

CS : Common sub-structure toT1 andT2

T1 T2 T3

Fig. 1. A set of trees and their common sub-structure forε = 2

the nodesB, C andD appears inT1 and T2, i.e. 2 trees of the input: for a support threshold ofε = 2,
it is the only desired result. In this section, we give the graph theory background necessary to formally
define the task described before. We will first formally definewhat a tree is. Then we will show how
to define a tree sub-structure of a tree (tree inclusiondefinition), and under which conditions a given
tree sub-structure is considered common to several other trees (frequent treesdefinition). Last, we will
characterize the “biggest” of these tree sub-structures (closed frequent treesdefinition).

Trees

Let L = {l1, ..., ln} be a set of labels. Alabeled treeT = (N, A, root(T), ϕ) is an acyclic connected
graph, whereN is the set of nodes,A ⊂ N × N is a binary relation overN defining the set of edges,
root(T) is a distinguished node called theroot, and ϕ is a labelling functionϕ : N 7→ L assigning a
label to each node of the tree. We assume without loss of generality that edges are unlabeled: as each
edge connects a node to its parent, the edge label can be considered as part of the child node label. A
tree is anattribute treeif ϕ is such that two sibling nodes cannot have the same label (more details on
attribute trees can be found in [12]). Letu ∈ N andv ∈ N be two nodes of a tree. If there exists an edge
(u, v) ∈ A, thenv is a child of u, andu is the parent of v. For two nodesu ∈ N and v ∈ N , if there
exists a set of nodes{u1, ..., uk} such that(u, u1) ∈ A, (u1, u2) ∈ A, ..., (uk, v) ∈ A, then{u, u1, ..., uk, v}
form a path in T . The length of the path{u, u1, ..., uk, v} is |{u, u1, ..., uk, v}| − 1. If there exists a path
from u to v in the tree, thenv is a descendantof u, andu is anancestorof v. Let u ∈ N be a node of
a treeT . The length of the path fromroot(T) to u is thedepthof u, denoted bydepth(u).
Tree truncation: Our DRYADEPARENT algorithm has the specificity to discover its objective trees one
level of depth at a time. Consider for example the treeT of Fig. 2 and suppose that it is the objective
of DRYADEPARENT: each iteration will discover one more of its depth level, discovering firstT|0 andT|1

(the first iteration discovers the depth levels 0 and 1), thenT|2 in the second iteration, andT|3 = T in the
last iteration. To characterize these intermediate levelsT|0, T|1 and T|2, we introduce thetree truncation
concept: the truncation of a tree at a given depth level consists only of the nodes of that tree having
a lesser or equal depth level, and the corresponding edges. The formal definition is as follows. Let
T = (N, A, root(T), ϕ) be a tree, andd an integer such thatd ≤ depth(T). The truncation ofT at the

B C

AA

ED F G

B C

A

JIH

Depth 0

Depth 1

Depth 2

Depth 3

Original treeT

ED F G

B C

A

T|0 T|1 T|2

Truncations ofT

Fig. 2. A treeT and its truncations

depth leveld is the treeT|d = (N|d, A|d, root(T), ϕ) such thatN|d = {n ∈ N | depth(n) ≤ d} and
A|d = {(u, v) ∈ A | u, v ∈ N|d}.

Tree inclusion

The essential problem for discovering frequent patterns isto be able to determine if a given pattern
appears or not in the input data. In the case of tree mining, this means determining if a pattern tree
is included in any tree of the data. There are many different ways to define such atree inclusion, the
interested reader is referred to [14] for an extensive study. In this paper, we use the following definition,
which is the basis of many other tree mining algorithms.

Let AT = (N1, A1, root(AT), ϕ1) be an attribute tree andT = (N2, A2, root(T), ϕ2) be a tree.AT is
included inT if there exists an injective mappingµ : N1 7→ N2 such that:

1) µ preserves the labels:∀u ∈ N1 ϕ1(u) = ϕ2(µ(u))
2) µ preserves the parent relationship:∀u, v ∈ N1 (u, v) ∈ A1 ⇔ (µ(u), µ(v)) ∈ A2

This relation will be written asAT ⊑ T . In the tree mining literature,AT is also said to be aninduced
subtreeof T when using the inclusion definition stated above. Fig. 3 shows the inclusion of an attribute

EM(AT, T) = {µ1, µ2, µ3}X1

A3

R2

C7B4 R6

S5 Q8 Z9 W10

A11

V12 B15C13 U14 B16

A3

B4 C7 C13 B15

A11

B16

AT

T

A

B C

Image ofAT in T :

Locc(AT, T) = {3, 11}

Mappingµ1

Mappingµ2

Mappingµ3

Fig. 3. Tree inclusion example (node identifiers are subscripts of nodes labels inT)

treeAT in a treeT , along two possible mappingsµ1 or µ2.
If we haveAT ⊑ T andT 6⊑ AT then we say thatAT is strictly includedinto T and we denote it by
AT ⊏ T . If AT ⊑ T , the set of mappings supporting the inclusion is denoted byEM(AT, T). In the
example, we haveEM(AT, T) = {µ1, µ2}. The set ofoccurrencesof AT in T , denoted byLocc(AT, T),

is the set of nodes ofT onto which the root ofAT is mapped by a mapping ofEM(AT, T). In the
example,Locc(AT, T) = {3, 11}, this corresponds to the identifiers of nodes labeled byA mapped by
mappingsµ1 andµ2.

We also introduce the notion ofimageof an attribute treeAT in a treeT . The set of images ofAT

into T is the set of (attribute) trees obtained by mappingAT onto T by applying the mappings from
EM(AT, T). In the example, we can see that the image ofAT in T consists of the nodes ofT mapped
from AT by µ1 andµ2.

Frequent attribute trees

We can now define the problem of findingfrequent attribute treesin a tree database. LetTD =
{T1, ..., Tm} be a tree database. ThedatatreeDTD is the tree whose root is an unlabeled node, having
the trees{T1, ..., Tm} as its direct subtrees. Such a datatree is shown in the left part of Fig. 4, where
TD = {T1, T2}.

The supportof an attribute treeAT in the datatree can be defined in two ways:
• supportd(AT) =

∑m

i=1
σd(AT, Ti) where σd(AT, Ti) = 1 if AT ⊑ Ti, 0 otherwise.(document

support)
• supporto(AT) =

∑m

i=1
σo(AT, Ti) whereσo(AT, Ti) = |Locc(AT, Ti)| (occurrence support)

In this paper, we are interested in finding attribute trees frequent by document support. The termsupport
will now be used for document support. But for the sake of completeness, our algorithm needs to keep
track of all frequent occurrences, and will use the occurrence support for processing.

Let ε be an absolute frequency threshold.AT is a frequent attribute treeof DTD if supportd(AT) ≥ ε.
The set of all frequent attribute trees is denoted byF(DTD, ε), and by abuse of notation we will only
denote it asF in the rest of this paper.

Datatree:DTD
A

B

A

C

B

G

C

H

A

B

A

C

H

A

B C

G

G H

A

B C

A

B C

A

B C

G H

A1

B2

G3

C4

H5

A6

T1 T2

B7

K8 G9

C10

H11

D12

Frequent trees forε = 2:
P1 P2 P3 P4 P5 P6 P7

P8 P9 P10

{1, 6} {1, 6}

{1, 6} {1, 6}

{1, 6}{2, 7} {4, 10}Locc:

Locc: {1, 6} {1, 6} {1, 6}

Fig. 4. A datatree with two trees, and all the frequent trees for ε = 2

The example of Fig. 4 shows all the frequent attribute trees for a support threshold ofε = 2.

Closed trees

The problem with frequent trees is that usually, there are many of them, which implies long computation
time. Moreover, lots of these frequent trees contain redundant information. For example consider Fig. 4:
treesP1, P2,...,P9 are frequent but this is just a byproduct of the fact that treeP10 is frequent (if a tree is
frequent, all its subtrees are also frequent). When examining the mappings, we can see that the mappings
of P1, P2,...,P9 are included in the corresponding mappings ofP10: treesP1, P2,...,P9 do no bring any
new information compared toP10. So if we could characterize trees such asP10, and only compute those
trees without generating trees likeP1, P2,...,P9, a lot of computation time would be saved.

Such a characterization exists and have been pioneered by Pasquieret al. [15] for frequent itemsets, and
by Chi et al. [13] for trees. It is based on theclosure property: P10 is a closed frequent tree, intuitively
this means that for its set of mappings, it is the maximal treeaccording to inclusion. Formally:

Definition 1: A frequent attribute treeAT ∈ F is closed either if:
• AT ∈ F is not included into any other frequent attribute treeAT ′ ∈ F

or:
• if AT is included into a frequent attribute treeAT ′ ∈ F , then there exists a mapping inEM(AT, DTD)

which is not in the mappings ofEM(AT ′, DTD).
We will denote the set of all closed frequent attribute treesas C, with the same abuse of notation as
before.

Closed set of trees

Let S ⊆ F . The setS is said to beclosedif all the trees ofS are closed relatively to the other trees
of S, i.e. in definition 1F is replaced byS.

Tree mining problem

The tree mining problem we are interested in is to find all the closed frequent attribute trees for a given
datatree and support threshold. The merit of this problem isthat the number of closed frequent attribute
trees is much smaller than the number of all frequent attribute trees, but the amount of information is
the same in both cases: all the frequent attributes trees canbe easily deduced from the closed frequent
attribute trees. Thus finding such closed trees enables faster mining without loss of information.

III. RELATED WORK

In this section, we will first recall the seminal works about frequent itemset mining, and show how
they have been extended to perform frequent tree mining.

A. Itemset mining

The pioneering works for the mining of frequent itemsets have been made by Agrawal and Shrikant,
who introduced the Apriori algorithm for mining frequent itemsets in a propositional database [16]. The
settings are much simpler than the problem of this paper: thedata consists oftransactions, which are
sets ofitems. The problem is to find frequentitemsets, i.e. the sets of items that occur frequently in the
data. To find these frequent itemsets, Apriori uses agenerate and testmethod, which means that it will
proceed by generating candidate itemsets, and then test these candidate itemsets against the data to check
if they are frequent or not. The enumeration of these candidate itemsets is done in alevelwisemanner:
first the candidate itemsets of size 1 are generated, then thecandidate itemsets of size 2, and so on and so
forth. The candidate itemsets of sizei + 1 are generated by combining together the itemsets of sizei that
passed the frequency test. To prune the search space and hence improve the performances, the algorithm
uses ananti-monotonicity property: if a candidate itemsetsI1 is found infrequent, then it is not necessary
to build any bigger candidate itemsetI2 such thatI1 ⊂ I2, as by definition this candidate will necessarily
be also infrequent.

Fig. 5 shows an example execution of the Apriori algorithm. The data is first transformed into a matrix
representation, easier to use for counting frequency. In the first iteration, the candidates of size 1 are
generated (all the single items), and their support is computed. The frequency threshold being set to 2,
only the itemE is not frequent and does not make it to the next iteration. Allthe other candidates of
size 1 are frequent itemsets, and are combined together in iteration to make candidate itemsets of size
2. The frequency of these candidates is computed, and it is found that only{B, D} is not frequent. The
other candidates are frequent itemsets, and are combined together in the third and last iteration to give the

candidates of size 3. Note that even if{B, C} and {C, D} are frequent the candidate{B, C, D} is not
constructed. This comes from the fact that{B, D} ⊂ {B, C, D}, and{B, D} is known to be infrequent:
so necessarily{B, C, D} is also infrequent and needs not to be generated. The supportof the candidates
of size 3 is evaluated, and{A, B, D} is eliminated as infrequent. The other candidates are frequent, and
there are no ways to combine them for a fourth iteration: the algorithm stops.

A B C D E

1

2

3

4

5

1 1 1 1

1 1 1

1 1 1

1 1

1 1 1

1

1

0

00

0 0

0 0

0

Matrix representation

Items

T
ra

n
sa

ct
io

n
s

Candidates Support

3

Iteration 2

of size 2

A B
A C
A D
B C
B D
C D

1
3

3
4
2

Iteration 1

Candidates
of size 1

Support

A
B

D
C

E

4
3
5
3
1

Candidates Support

3

2

Iteration 3

of size 3

A B C
A B D
A C D

1

1 A B C D

2 A C D

3 A B C

4 C D E

5 A B C E

Items

T
ra

n
sa

ct
io

n
s

Data

Execution of Apriori algorithm,ε = 2

Fig. 5. An example of Apriori execution.

Among the many improvements to this algorithm, Pasquieret al. [15] were the first to design an
algorithm for discovering only theclosed frequent itemsets, and showed performances improvements
around one order of magnitude. These results were improved by Zaki’s CHARM algorithm [17]. Today,
the fastest algorithm for discovering closed frequent itemsets is LCM2 [18], the winner of the FIMI’04
contest.

B. Tree mining

Most tree mining algorithms are adaptations of the Apriori principle to tree-structured data. They usually
deal with findingall the frequent subtrees from a collection of trees. One pioneering work is Asaiet al.
Freqt algorithm [3], discovering all frequent subtrees with preservation of the order of the siblings. The
other pioneering work is Zaki’sTreeMiner[19], using a more relaxed inclusion definition where the order
still has to be preserved, but instead of the parent relationship the mapping has only to preserve the
ancestor relationship.

Both these algorithms, like the Apriori algorithm described before, are levelwise generate and test
algorithms, and make use of the anti-monotonicity property. The size of a candidate tree is expressed as
its number of nodes, so these algorithms first generate all the candidate trees with one node, then from
those of these candidates which are frequent generate the candidate trees with two nodes, and so on and
so forth. Each candidate’s frequency has to be assessed by testing its inclusion in all the trees of the data,
which is a very computation-time expensive operation. Another difficult part is the candidate enumeration
method. Unlike the case of itemsets, here the extensions of two different candidates of sizei can lead to
the same candidate of sizei + 1, as seen in Fig. 6: there are two different candidates of size2, A − B
andA−C. To create candidates of size 3, one possibility is to joinA−C to A−B, the other is to join
A−B to A−C. Obviously these two possibilities lead to the same candidate of size 3. This introduces
redundancies in the enumeration process, which must be avoided at all costs as testing the frequency for
one candidate or testing for duplicates inside the candidates set are computationally expensive operations.

join

A

B

C

A

B

A

C

B C

A

Candidates of
size 2

Candidate of
size 3

Candidates of
size 1

Bjoin

Cjoin

A

C

join

A

B

Fig. 6. Three steps of candidate generation, the two candidates of size 2 lead to a single candidate of size 3.

The authors of the two previous papers prevent this by setting an order on the generation of candidates,
which imposes to add new nodes only on therightmost branchof the frequent tree of sizei used as a
basis. This enumeration strategy avoids duplicates, thus enabling a better efficiency than naive methods.
It is illustrated on Fig. 7.

: Node of the rightmost branch

: Extension on this node

Fig. 7. Candidate generation via the rightmost branch enumeration method.

The second generation of tree mining algorithms has been designed to get rid of the order preservation
constraint. This was realized by basing the enumeration procedures on canonical forms, one canonical
form representing all trees that are isomorphic except for the order of siblings. Such work include the
Unot algorithm by Asaiet al. [20], the work of Nijssenet al. [21], the PathJoin algorithm [22] and the
recent Sleuth algorithm by Zaki [23].

There are still very few algorithms mining closed frequent trees. We already mentioned our DRYADE

algorithm [11], which relies on a very general tree inclusion definition and a newhooking principle.
The only algorithm mining closed frequentinducedsubtrees is the CMTreeMiner algorithm of Chiet
al. [13]. It uses the same generate and test principle as other tree mining algorithms, extended to handle
closure. This algorithm has shown excellent experimental results. Recently, Arimura & Uno proposed the

CLOTT algorithm [12] for mining closed frequent attribute trees,in the same settings as those of this
paper. This algorithm has a proved output-polynomial time complexity, which should also give excellent
performances. Up to now there is not yet an implementation available.

It is clear that the generate and test method used by all thesealgorithms (except DRYADE) has an
efficiency which depends heavily on the structure of the treepatterns to find. In case of big tree patterns
with high depth and high branching factor, many edge-addingsteps are needed to find these tree patterns,
and each step can be computationally expensive because of the number of possible expansions and of the
necessary frequency testing.

IV. THE DRYADEPARENT ALGORITHM

A. Idea of the algorithm

Before going into the details of the DRYADEPARENT algorithm, we will first explain the intuition
behind our method. For sake of readability, we will use the term closed frequent treeto designate the
closed frequent attribute trees that the DRYADEPARENT algorithms discovers.

Briefly stated, the principle of our algorithm is to discoverparts of the frequent trees, and then to
assemble these parts together to get the frequent trees. Theparts that we are interested in are the closed
frequent treesof depth 1. The interesting characteristic of these closed frequent trees of depth 1 w.r.t. the
final result is that:

• either they are closed frequent trees as is ;
• or they represent one node and its children in one or more closed frequent trees (a formal proof will

come later in Lemma 1). Consider for example Fig. 8: the closed frequent trees of depth 1 and of
roots A, B and C assembled together make a single tree of depthtwo, which is the closed frequent
tree to find.

B

A

B C

G

B

H

C

H

C

A

G

Fig. 8. A closed frequent tree and its tiles.

It is quite simple to find these closed frequent trees of depth1 by using a standard closed frequent itemset
algorithm: for any labelx ∈ L, create a matrix whose transactions are the nodes of labelsx in the trees
of the data, and whose items are the labels of the children of these nodes. The resulting closed frequent
itemsets will be sets of edges{(x, y1), ..., (x, yn)} rooted on the same node, i.e. closed frequent trees of
depth 1. By iterating on all the labelsx, all the closed frequent trees of depth 1 can be found by this
method. An example of discovery of closed frequent trees of depth 1 is shown on Fig. 9.
That is why for now on we will call the closed frequent trees ofdepth 1 with the shorter name oftiles,
as like in mosaics or in puzzles, they are the small parts thatare assembled together to make a closed
frequent tree ofC.

Labels D, G, H, K: not frequent

1

1 1

Label B

2

7

G K

0

1

1

Label C

H

4

10

1

6

B C D

1 01

1 1 1

Label A

A

B C

B

G

C

H

Closed frequent trees of depth 1

N
od

e
s

of
la

be
l

A

A1

B2

G3

C4

H5

A6

T1 T2

B7

K8 G9

C10

H11

Datatree

D12 {G}

{H}

{B, C}

Closed frequent itemsetChildren of these nodes
ε = 2

Fig. 9. Example of discovery of closed frequent trees of depth 1.

Remark: Another advantage of the tiles is that they follow the dynamic programming as defined in
[24], in the sense that they are solutions to subproblems of the main problem, that are computed only
once and can then be reused any number of times. This allows for better performances, especially in the
cases where the closed frequent trees share many common tiles.

The most obvious hint to determine how to combine the tiles together is to look at their labels. If a
leaf label of a tileT i1 matches with the root label of a tileT i2, then it is possible for these two tiles
to be “hooked” together and create a bigger tree. This is shown on Fig. 10. However nothing guarantees

T i1

B C

A

B

D E

B C

A

ED

T i2

Fig. 10. A simple hooking between two tiles, and the resulting tree.

that in the mappings ofT i1 andT i2 in the data, the leaf ofT i1 and the root ofT i2 are the same node.
If this is not the case in at leastε trees of the data, then the tree constructed by combiningT i1 andT i2
will not be frequent, and so cannot be part of the final result.For example consider Fig. 11. The tiles are
the same tilesT i1 andT i2 that in Fig. 10, so from the labels they can hook. By analyzingthe mappings,
we can see that inT1, the nodes forB in T i1 andT i2 are the same (node 3), so this mapping supports
the hooking ofT i2 on T i1. However, inT2, the nodes forB are different: node 9 forT i1, and node 11
for T i2. So the mapping fromT2 does not support the hooking. The hooking being supported inonly one
tree, and the frequency threshold beingε = 2, the hooking is not frequent, so must not be done.

Ensuring that the mappings of the data support the tiles combinations is a necessary step. But this is
not sufficient. There can be many tilesT i2,...,T in whose root node label matches a leaf node label of
T i1, such matching being supported by mappings in the data. Thusmany new trees can be constructed:
combiningT i1 with T i2, or T i1 with T i3, or evenT i1 with T i2 andT i3...This is illustrated on the example
of Fig. 12, where 3 tiles{T i2, T i3, T i4} can hook onT i1.

E13

B

D E

A

B C

T i1

T i2

Tiles

T1 T2

Datatree
Mappings

in T1 in T2

Hooking OK Can not hook

X1

A2

B3 C6

E5D4

Y7

A8 B11

B9 C10 D12 E13

A2

B3 C6

B3

D4 E5

A8

B9 C10

B11

D12

Fig. 11. A case where the hooking of tiles is not backed up by the mappings.

Tiles that can hook onTi1

B

B

E F

C

A

D

A

B C D
C

G

D

H I
G

E F

A

B C D

E F

A

B C D

G

E F

A

B C D

H I

A

B C D

H I

A

B C D

H IG

E F

A

B C D

G H I

T i1

T i2 T i3 T i4

All the possible hooking combinations

Fig. 12. Multiple hooking possibilities on a tileT i1, and the resulting trees.

However, few of these combinations correspond to what can actually be found in a closed frequent
attribute tree of the result. In fact, the tilesT i2, ..., T in combined withT i1 do not only need to verify a
frequency criteria, but also need to verify aclosurecriteria. This means that we will hook onT1 only the
closed frequent sets of tiles of{T2, ..., Tn} whose combination withT1 to make a new tree is supported by
the data. We will show later that this corresponds exactly towhat is found in the closed frequent attribute
trees. We call the operation consisting in finding the closedfrequent sets of tiles hooking on other tiles
and creating new trees from them ahooking. This is the basis of our algorithm. Such operations allow
for a simple level-by-level, breadth-first strategy:

1) Find the tiles that represent the top level of the closed frequent trees, they will be calledroot tiles.
2) For each of these tiles, iteratively perform hookings to grow them by one level at each iteration.

B. Algorithm details

Until now, we have given an intuitive overview of our method.We now give thorough explanations over
the concepts of tiles and hookings, as well as the detailed pseudo-code of our algorithm. As a running
example, we use the datatree of Fig. 13 with a support threshold of ε = 2. The closed frequent attribute
trees to find (i.e. the elements ofC) are also represented on this figure asP1, P2, P3 andP4, along with
their occurrences in the datatree.

The whole algorithm is summed up in Algorithm 1. Note that in Algorithms 1 and 2,closed frequent itemset algor
is a general algorithm mining closed frequent itemsets, it can be any closed frequent itemset miner. We

Closed frequent trees:

A11

C19

F20

I21

A

B C

P2

G H

Locc = {22, 27}

A

B C

D E F

G H I

P1

A1 A22

B23 C25

H26G24

A

B C

P3

Locc = {1, 11, 22, 27}

A12 B13

D14

I15

E16

G17 H18

K10

D33

T1 T2
T5

Datatree

Locc = {1, 11}

J34

C35

F36

I37

Locc = {7, 19, 35}

B2

D3 E4 F8

I9H5 G6

C7

A27

B28 C31

H32

T3 T4

C

F

I

P4

K29 G30

Fig. 13. Datatree example (node identifiers are subscripts of node labels), and closed frequent trees forε = 2

assume that this closed frequent itemset miner is sound and complete. In our implementation we use the
algorithm LCM2 [18].

1) Computation of the tiles:The definition of a tile is as follows.
Definition 2 (Tile): A tile is a frequent attribute tree made from a node of a closedfrequent tree ofC

and all its children. The set of all tiles for the closed frequent trees ofC is notedT I(C).

B C G H

E

F

C

I

F

A

D E

B

T i1 T i2 T i3

{1, 11, 22, 27} {2, 13} {4, 16}

T i4

C

H

T i7

B

G

T i6T i5

{23, 28} {25, 31}

Locc:

Locc: {8, 20, 36}{7, 19, 35} Closed frequent treeP2

A

B C B

G

C

HD E F

A

(a) Tiles of our example (b) Hookings at iteration 1

Fig. 14. Tiles and hookings

We have seen before that we can use a closed frequent itemset mining algorithm to compute these tiles.
We will now detail how, and prove that this method actually compute the tiles ofT I(C).

For a given labell let us consider the subproblem of finding all the tiles of the closed frequent trees of
C whose root is labeled byl. We note the set of these tilesT I(C)l. Because these tiles come from closed
frequent trees ofC, they are frequent in the datatreeDTD. We can also infer that the set of tilesT I(C)l

is closed, if it was not the case it would contradict the closure of C (see the proof of the following lemma
for more details). As all these tiles share the same root label, we have to find the sets of children labels
and the occurrences.

This problem can be reformulated as a propositional closed frequent itemset discovery problem (as in
Section III-A) as follows. Consider a transaction matrixMl whose transactions are the nodes ofDTD of
label l, and whose items are the labels of the children of these nodes(we remind the reader that as defined
in Section III-A, in a transaction matrix the transactions are the rows and the items are the columns). A
’1’ in the cell in the row corresponding to the nodeo (of label l) and in the column corresponding to the

Algorithm 1 The DRYADEPARENT algorithm
Input: A datatreeDTD and an absolute frequency thresholdε
Output: The setCDryade of all the closed frequent trees inDTD with frequency≥ ε

1: T I(C)← Computation of all the tiles
2: RP0 ← initial root tiles of DTD

3: i← 0 ; CDryade ← ∅
4: HookingBase← ∅
5: while RP i 6= ∅ do
6: RP i+1 ← ∅
7: for all RT ∈ RP i do
8: if no hooking is possible onRT then
9: CDryade ← CDryade ∪ RT

10: else
11: RP i+1 ←RP i+1 ∪Hookings(RT, HookingBase)
12: end if
13: end for
14: RP i+1 ←RP i+1 ∪DetectNewRootT iles(T I(C), HookingBase)
15: i← i + 1
16: end while
17: Return CDryade

label x indicates that the nodeo of label l has a child of labelx. For example, in the datatree of Fig. 13,
MB is:

Occurence ofB D E G K

2 1 1 0 0
13 1 1 0 0
23 0 0 1 0
28 0 0 1 1

The closed frequent itemsets for matrixMl are notedCFIS(Ml). All these closed frequent itemsets
satisfy the occurrence-frequency constraint defined before. Since we are interested in document-frequent
results, we suppress fromCFIS(Ml) all the itemsets whose occurrences appear in less thanε documents,
to get the setCFISdoc(Ml). From each itemsetf of CFISdoc(Ml) a tile of rootl is built, whose children
are the items off and whose occurrences are the transactions supportingf . The set of such tiles is noted
T I(CFISdoc(Ml)).

Lemma 1: For any labell ∈ L, we have:

T I(C)l = T I(CFISdoc(Ml))
Proof: (T I(C)l ⊆ T I(CFISdoc(Ml))) Consider a tileT ∈ T I(C)l. Let H denote the set of the

labels of the leaves ofT , and O the set of the occurrences ofT . We have to show thatH appears
in CFISdoc(Ml). By definition, the tile is frequent, so has at leastε occurrences inDTD. All these
occurrences appear inMl, soH is frequent by document frequency, with supportO. Hence to show that
H appears inCFISdoc(Ml), we only have to show thatH is closed (intuitively,H is closed if it is
maximal for its set of occurrences. We refer the interested reader to [15] for a formal definition of closed
itemsets). Seeking a contradiction, suppose thatH is not closed, then there would be, for the occurrences
of O, an itemsetH ′ such thatH ⊂ H ′. FromH ′ we can build a tileT ′ that has the same occurrences as
T , but more leaves. Considering the closed frequent tree ofC from which T was extracted, it means that
this closed frequent tree can be replaced with a closed frequent tree includingT ′, so it means thatC was
not closed. This contradicts the hypothesis, so we proved bynegation thatH is closed.

(T I(C)l ⊇ T I(CFISdoc(Ml))) Considerf a document-frequent closed frequent itemset ofMl. It has
at leastε different occurrencesO, so a tileT rooted byl and having at least the labels off as children

Algorithm 2 The Hookings function
Input: A closed frequent attribute treeAT , hooking databaseHookingBase

Output: All the new closed frequent attribute trees found by hookingtiles on the leaves ofAT
1: Result← ∅
2: M ← matrix whose transactions are the occurrences ofAT , and whose columns are the tiles that can

be hooked onAT .
3: FIS ← closed frequent itemset algorithm(M)
4: for all (f, O) ∈ FIS do
5: if 6 ∃HK ∈ HookingBase st (AT, f, O) ⊆ HK then
6: Result← Result∪ new attribute tree resulting from the hooking of the tiles off on AT
7: Add (AT, f, O) to HookingBase

8: if ∃{HK1, ..., HKx} ∈ HookingBase st ∀i ∈ [1, x] HKi ⊆ (AT, f, O) then
9: Suppress{HK1, ..., HKx} from HookingBase, as well as the corresponding attribute trees

in RP i or CDryade

10: end if
11: end if
12: end for
13: Return Result

Algorithm 3 The DetectNewRootT iles function
Input: Set of tilesT I(C), hooking databaseHookingBase where HookingBasej are the hookings

performed in iterationj
Output: Tiles of T I(C) that have become root

1: Result← ∅
2: for all T ∈ T I(C) st T ∈ HT where(∗, HT, ∗) ∈ HookingBasei do
3: if [∀o ∈ Locc(T, DTD) ∄T ′ st T can hook onT ′ and ((T ′, {..., T, ...}, ∗) 6∈ HookingBase)] AND

[∃o ∈ Locc(T, DTD) st T cannot hook on any other tile foro] then
4: Result← Result ∪ T

5: end if
6: end for
7: Return Result

exists in a closed frequent tree ofC, the occurrences ofT include those ofO. If in the closed frequent
tree ofC the root of the considered subtree had one more children thanin f , then this would be reflected
in Ml, andf would not be closed. Hence the labels of the leaves ofT are exactly the labels inf . In the
same way, ifT had more occurrences than those ofO, then these occurrences would appear inMl with
exactly the items off , which is impossible as the only occurrences for the itemsetf are those ofO.

By iterating on the labels ofL with the method previously shown, all the tiles ofT I(C) can be
computed. This is the first operation of our algorithm, so it is done on line 1 of Algorithm 1.

In the example, from the matrixMB, the closed frequent itemsets{D, E} and{G} are extracted, with
respective occurrences{2, 13} and{23, 28}. Both these itemsets are document-frequent, the corresponding
tiles appear in Fig. 14(a) asT i2 andT i6, along with all the other tiles for the datatree of Fig. 13.

2) Hooking the tiles:Having found the tiles, the goal of DRYADEPARENT is to compute efficiently all
the closed frequent trees through hookings of these tiles. As stated before, we have chosen a levelwise
strategy, where each iteration computes the next depth level for the closed frequent trees being constructed.

Initial Root tiles: To begin with, the tiles that correspond to the depth levels 0and 1 of the closed
frequent trees must be found in the set of tiles. Such tiles are calledroot tiles, for they are the top level
of the closed frequent trees ofC. They are the starting point of our algorithm.

As these tiles represent the top level of the closed frequenttrees, one naive way to discover them is
to discover the tiles who cannot be hooked on any other tile, i.e. which are never under any other tile
whatever the mappings. This method works partially and can discover easily a subset of the root tiles,
that we callinitial root tiles. This is done in line 2 of Algorithm 1. In our exampleT i1 is the only initial
root tile because its occurrences 1, 11, 22 and 27 are not leaves of any other tile.

Notations:In the following, we will denote byRP i the frequent trees that are the starting points for
the algorithmi-th iteration (RP0 being the initial root tiles), and byCRPi

the closed frequent trees that
will be obtained by successive hookings on the frequent trees ofRP i at the end of the algorithm.CRPi

is
for illustration purposes, and is not actually constructedby the algorithm. In the example,RP0 = {T i1}
andCRP0

= {P1, P2, P3} of Fig. 13.
Hooking: The initial root tiles are the entry point to the main iteration of DRYADEPARENT. In iteration

i, for each elementT of RP i the algorithm will discover all the possible ways to add one depth level to
T w.r.t. the closed frequent trees to get. This is done via thehooking operation:

Definition 3 (Hooking): For an integeri, let T be an element ofRP i, andC ∈ CRPi
such that∃q ≤ i

st T = C|q (T is the truncation ofC at depthq). The hooking operation consists in constructing a
new frequent treeT ′ by hooking a set ofhooking tiles{T i1, ..., T ik} on the leaves ofT such that the
occurrences{o1, ..., op} of T ′ include those ofC, andT ′ = C|q+1.

Such a hooking will be denoted byHK(T, T ′) = (T, {T i1, ..., T ik}, {o1, ..., op}).
The subtle point is to find all the frequent hooking tile sets for an elementT of RP i. The potential

hooking tiles onT are all tiles whose root is mapped to a leaf node ofT . In our example, the potential
hooking tiles onT i1 are {T i2, T i4, T i6, T i7}. Among all these potential hooking tiles, we want to find
those which frequently appear together according to the occurrences ofT . This is a propositional closed
frequent itemset discovery problem, and we can solve it by creating a matrixM whose each linek
corresponds to an occurrenceok of T , and each columnj corresponds to a potential hooking tileT ij.
M [i, j] = 1 iff. for the occurrenceok of T , a leaf ofT is mapped to the same node as the root ofT ij.
Applying a closed frequent itemset discovery algorithm onM enables discovering efficiently all the closed
frequent hooking tile sets. This is done in line 2 and 3 of Algorithm 2. The frequent trees discovered
must be inserted intoRP i+1 for further expansion in the next iteration.

In our example, the matrixM for T i1 is:

Occurence ofT i1 T i2 T i4 T i6 T i7

1 1 1 0 0
11 1 1 0 0
22 0 0 1 1
27 0 0 1 1

We deduce that the frequent hooking tile sets onT i1 are {T i2, T i4} and {T i6, T i7}. These hookings
are illustrated in Fig. 14(b). It can be seen that the closed frequent treeP2 has been discovered.

Closure checking:However, in some cases hooking can lead to frequent trees that are not closed.
Consider the example of Fig. 15. Both tilesT i′1 andT i′2 are initial root tiles, butHooking 2on tile T i′2
produces a frequent tree that is included in the frequent tree produced byHooking 1on tile T i′1, thus
being unclosed.
Such cases can be detected quickly by analyzing the hookingsalready made in the previous iterations. For
this purpose, the hookings performed so far are stored in a database denoted byHookingBase. Each hook-
ing is represented by a triplet(root frequent tree, hooking tiles, occurrences) whereroot frequent tree
is the root attribute tree of the hooking,hooking tiles are the tiles hooking onroot frequent tree for
this hooking, andoccurrences are the occurrences ofroot frequent tree considered in this hooking. As
shown in Algorithm 2 lines 4-12, when a new hooking is proposed, the functionHookings checks that
this new hooking satisfies the closure property w.r.t. the hookings of the database. Two non-closure cases
can arise: 1) the new hooking is included into an existing hooking, then the new hooking is discarded (line
5); 2) the new hooking includes an existing hooking, then theexisting hooking and the corresponding
closed frequent tree are erased from the database, and a new closed frequent tree is created from the new

C

C

C

C

C
T i′

4

B

A

B

Hooking 1 : A

B

D

B

E F

A

D

B

E F

Occs = {1}

D

B

E

A A Occs = {1}Hooking 2 :

B

D

B

E

A7

B8

Tiles:

D

B

E F

A
Occs = {1} Occs = {1, 7}

Occs = {2} Occs = {5}

Datatree,ε = 1

A1

B2

D3 E4 F6

C5

T i′1 T i′2

T i′
3

Fig. 15. Example of generation of an unclosed frequent tree

hooking, which is registered into the hooking database (lines 8-9).
Preparing next iteration: In the first iteration, the seeds of the closed frequent treesto be discovered

are the initial root tiles, grouped intoRP0. The frequent trees grown by hooking tiles on these root tiles
are inserted intoRP1, and will be used as seed for the next iteration (line 10 of Algorithm 1). But this
is not enough to discover all the closed frequent trees ofC. We have seen before that only a fraction of
all the root tiles could be discovered at the beginning of thealgorithm, these were the initial root tiles.
The problem is that a tileT can as well be the root tile of a closed frequent treeP , and a non-root tile
of another closed frequent treeP ′. So for the mappings ofT corresponding toP ′, T will be hooked on
other tiles, preventing it from satisfying the same conditions as the initial root tiles. In the example,T i4
is as well a subtree inP1, and the root tile ofP4. The problem is that if we look at the mappings of
T i4, this tile does not hook on any other tile only for the mappingrooted at occurrence 35: its “root”
status does not appear frequent with so few information. So for all these root tiles that are not initial root
tiles, their discovery is delayed to later iterations, at a moment where we will have enough information
to determine if this tile was only the subtree of one or more closed frequent trees, or if it can also be the
root tile of some other closed frequent trees. So after our hooking step, we have to analyze the hooked
tiles to see if they belong to the category of tiles which willalways be hooked somewhere, or if they can
become root tiles at the next iteration. This is done in theDetectNewRootT iles function (Algorithm 3).
In line 2 of Algorithm 3, the tilesT which have been hooked on other tiles in the current iteration (and
so appear inHookingBasei) are iterated over. In line 3, these tilesT are tested: the left part of the AND
checks that there does not exist any unknown hooking betweenthese tiles and a given tileT ′, this for all
the occurrences ofT . If this left part is true, then we are assured to know everything about the hookings
of T . Here comes the “root” part verification: in the right part ofthe AND, we check that there exists
at least one occurrence ofT whereT does not hook on any other tile. If this part is also true, thenT

can not only be a subtree of other closed frequent trees, so isa root tile. This is recorded in line 4. In
our example,T i4 is one of these candidates to be root tile, it has been hooked on T i1 for occcurrences
7 and 19. There are no other tiles where it can hook (left part of the AND of line 3 satisfied), and for
occurrence 35 it does not hook on any other tile (right part ofthe AND also satisfied). SoT i4 becomes
a new root tile, this will allow the discovery of closed frequent treePi4 in the next iteration.

C. Soundness and completeness

Theorem 1: The algorithm DRYADEPARENT is sound and complete, i.e.CDryade = C.
Proof:

Completeness:

Let P ∈ C be a closed frequent tree. We want to prove thatP is found by DRYADEPARENT. Let us
prove by induction on the depth levels ofP that for every depth leveld, P|d is found at some iteration
of DRYADEPARENT.

For depth level 1,P|1 is by definition a closed frequent tree of depth 1, i.e. a tile.So it is found in the
first step of DRYADEPARENT.

For depth leveld let us suppose that the induction property is true, i.e. thatthere exists an iterationi
of DRYADEPARENT whereP|d is found as an element ofRP i+1. Let us show thatP|d+1 is found in a
later iteration of DRYADEPARENT.

By definition of the tiles all the tiles corresponding to the direct subtrees ofP|d in P have been found in
the first step of DRYADEPARENT, so all these tiles appear as columns ofM in the Hookings procedure.
Let S denote this set of tiles. BecauseP occurs in at leastε documents,P has at leastε occurrences, so
the closed frequent itemset algorithm in theHookings finds a set of tilesf where at leastf ⊇ S. Let us
show that we cannot havef ⊃ S. Suppose thatf has one more tileT thanS, for the same occurrences.
This means thatT can also be hooked onP|d with the other tiles ofS, with occurrences that include the
occurrences ofP . So for all the mappings ofP , newP + T mappings can be found. This contradicts the
fact thatP is closed. Hencef = S.

We must now show that the test on line 5 of theHookings function (algorithm 2) is evaluated totrue,
i.e. that there are no hookings in the hooking base that includes the hooking of the tiles off on P|d (else
no frequent trees would be built from the hookings off). In the same way as we did previously, it is
easy to show by negation that if there was such a hooking, thenP would not be closed.

Hence the closed frequent treeP|d+1, resulting from the hookings of the tiles off on P|d, is correctly
constructed.

It is inserted intoRP i+2, hence the induction property holds.
So DRYADEPARENT is complete.

Soundness:
Let P be a frequent tree outputted by DRYADEPARENT. We want to show that we haveP ∈ C, i.e. P

is frequent andP is closed w.r.t. the set of all frequent trees.
Frequency: Suppose by negation thatP is not frequent. It means that either a tile ofP is not frequent

or that there exists a depth level ofP where the set of tiles for this depth is not frequent. In both cases, it
means that the closed frequent itemset algorithm gave a non-frequent result. It contradicts the soundness
of closed frequent itemset algorithm. HenceP is frequent.

Closedness: Suppose by negation thatP is not closed, i.e. there exists a closed frequent treeP ′ in
which P is included for all its occurrences. We consider all the possible inclusion cases, as shown in Fig.
16:

+ P ′

P

a) b) c)

Fig. 16. Three possible inclusion cases

a) One more sibling node: this case would mean that the corresponding tile was not closed, hence that
the closed frequent itemset gave a non-closed result. Once again, it contradicts the soundness of the
closed frequent itemset mining algorithm.

b) One more leaf child node: this case would mean that a tile hooking has not been discovered or not
been done. Because all the tiles are correctly found thanks to lemma 1, and that the filling of the
hooking discovery matrix is trivial, it would mean that either the closed frequent itemset algorithm
was not complete, which contradicts the completeness ofclosed frequent itemset algorithm, or
that the hooking was found but later dismissed. Such a dismissal could only be done by the closure
checking mechanism, and only if there is a bigger hooking forthe same occurrences at the same
place. This would mean thatP ′ itself is unclosed, which contradicts the hypothesis.

c) One more root parent node: LetT be the root tile ofP as found by DRYADEPARENT. In this case,
the root tile ofP ′ (containingP) is a tile T ′ 6= T , andT hooks onT ′. Suppose that there is such
a tile T ′. By definition it cannot be an initial root tile (or DRYADEPARENT would have found it),
and neither can beT (because it hooks onT ′). Because it was never considered as a root tile,
the hookings ofT on T ′ have not been found and do not appear in the hooking database.So the
condition on line 3 ofDetectNewRootT iles can not be satisfied for all the occurrences ofT , and
so T cannot be detected as a root tile.
By definition of the root tile detection procedure, this casecannot occur.

HenceP is closed, and we can conclude that the algorithm DRYADEPARENT is sound.

D. Complexity

We estimate the time complexity of the DRYADEPARENT algorithm according to the following param-
eters:

• ‖DTD‖ the number of nodes of the input database
• |C| the number of closed frequent trees to find
• d the average depth of a closed frequent tree ofC
• |T I(C)| the total number of tiles in the closed frequent trees ofC
Computation of tiles: The tiles are computed with the LCM2 algorithm [18], whose time complexity is

linear with the number of closed frequent itemsets to find. Sothe time complexity of the tile computation
step is linear with the number of tiles:

Complexity(T ile computation) ≃ O(|T I(C)|)

Computing the initial root tiles: To determine which tile is an initial root tiles, all the occurrences
of all the tiles are checked. This simple step hence has a timecomplexity of:

Complexity(Initial root tiles) ≃ O(‖DTD‖.|T I(C)|)

Main iteration The first step of the main iteration is a loop repeated as many times as there are
elements inRP i. These elements are truncations of closed frequent trees ofC, so we have|RP i| = α.|C|,
whereα is a constant.

• “if” of line 7: Determining if there are hookings on an elementRT ∈ RP i comes to check all of
its occurrences, the time complexity is:

Complexity(Check if hookings) ≃ O(‖DTD‖)

• Hookings procedure: Building the transaction matrix and running the LCM2 algorithm has a time
complexity of O(‖DTD‖.|T I(C)|). The hooking base must then be checked, the time complexity
of this search operation is linear with the number of hookings. An upper bound for the number of
hookings is the number of tiles. Hence:

Complexity(Hookings) ≃ O(‖DTD‖.|T I(C)|+ |T I(C)|)

≃ O(‖DTD‖.|T I(C)|)

The overall time complexity of the for loop is then:

Complexity(for loop) ≃ O(|C| × (‖DTD‖+ ‖DTD‖.|T I(C)|))

≃ O(|C|.‖DTD‖.|T I(C)|)

Then we have to compute the complexity of theDetectNewRootT iles procedure. For each tile there
is a search in the hooking base on line 2, and then on line 3 a search on all the occurrences of the tile
which needs another search in the hooking base. This gives anoverall complexity of:

Complexity(DetectNewRootT iles) ≃ O(|T I(C)|.|T I(C)|.‖DTD‖.|T I(C)|)

≃ O(‖DTD‖.|T I(C)|
3)

The main iteration is repeatedβ.d times (withβ a constant), so its time complexity is:

Complexity(Iterations) ≃ d.(Complexity(for loop) + Complexity(DetectNewRootT iles))

≃ O(d.(|C|.‖DTD‖.|T I(C)|+ ‖DTD‖.|T I(C)|
3))

≃ O(d.‖DTD‖.|T I(C)|.(|T I(C)|
2 + |C|))

The overall time complexity of the whole DRYADEPARENT algorithm is then:

Complexity(DryadeParent) ≃ Complexity(T ile computation)

+ Complexity(Initial root tiles)

+ Complexity(Iterations)

≃ O(|T I(C)|+ ‖DTD‖.|T I(C)|

+ d.‖DTD‖.|T I(C)|.(|T I(C)|
2 + |C|))

≃ O(|T I(C)|.(1 + ‖DTD‖+ d.‖DTD‖.(|T I(C)|
2 + |C|)))

≃ O(|T I(C)|.d.‖DTD‖.(|T I(C)|
2 + |C|))

We have given our complexity formula in terms of the number oftiles |T I(C)|. This number of tiles
can be approximated by the number of internal nodes in the closed frequent trees. With this we can
reformulate the complexity in terms of‖C‖ the number of nodes in the closed frequent trees andb the
average branching factor of the closed frequent trees ofC. Let IN(C) be the internal nodes of the closed
frequent trees ofC. We have:

b =
number of edges inC

number of internal nodes inC
The number of edges in a single treeT with N nodes isN − 1, we deduce that for the set of treesC:

b =
‖C‖ − |C|

‖IN(C)‖

So:

‖IN(C)‖ =
‖C‖ − |C|

b

Hence:

|T I(C)| ≃ ‖IN(C)‖ =
‖C‖ − |C|

b

The complexity formula can now be written as:

Complexity(DryadeParent) ≃ O(
‖C‖ − |C|

b
.d.‖DTD‖.(

(‖C‖ − |C|)2

b2
+ |C|))

From the above formulas we can conclude that the complexity of DRYADEPARENT is polynomial in the
number of tiles, polynomial on the number of nodes in the closed frequent trees, inversely proportional
to the square of the average branching factor, linear with the size of the data and linear with the average
depth of the closed frequent trees. Such characteristics should allow good scale-up properties, this will
be investigated in the next section.

V. EXPERIMENTS

This section reports on the experimental validation of DRYADEPARENT on artificial and real-world
datasets, as well as an application example on real XML data.The DRYADEPARENT algorithm will be
compared with the state-of-the-art closed tree mining algorithm, CMTreeMiner [13], using the original
C++ implementation of its authors. All runtimes are measured on 2.8 GHz Intel Xeon processor with
2GB memory (Rocks 3.3.0 Linux). DRYADEPARENT is written in C++, involving the closed frequent
itemset algorithm LCM2 [18], kindly provided by Takeaki Uno. Reported results are wall-clock runtimes,
including data loading and preprocessing.

A. Artificial datasets

In the usual tree mining algorithms studies, at most the length (i.e. the number of nodes) of the found
closed frequent trees is reported, without any informationabout the structure of these closed frequent
trees. However, branching factor and depth of the closed frequent trees intervene directly in the candidate
generation process, so they are likely to play a major role w.r.t. the computation time. To ascertain this
hypothesis, we wrote a random tree generator that can generate trees with a given node numberN and a
given average branching factorb. Nodes are labeled with their pre-order identifier, so thereare no couples
of nodes with the same label in a tree. We generated trees withN = 100 nodes andb ∈ [1.0; 5.0], b
increasing by increment of 0.1. For each value ofb, 10,000 trees were generated. LetT be such a tree.
For eachT a datasetDT was generated, consisting simply of 200 identical copies ofT (we perform this
200-times duplication of eachT to increase the processing time forDT and so reduce the error rate on
time measurement). EachDT was processed by both algorithms, with a support threshold of 200 (hence
the closed frequent tree to find is the treeT), and the processing time was recorded. Eventually, for each
value of b we regrouped the trees by their depthd, and got a point(b, d) by averaging the processing
times for all the trees of average branching factorb and depthd. Fig. 17(a) shows the logarithms of these
averaged time values w.r.t. the average branching factorb, and Fig. 17(b) shows the logarithms of these
averaged time values w.r.t. the depthd.

The Fig. 17(a) shows that DRYADEPARENT is orders of magnitude faster than CMTreeMiner as long as
the branching factor exceeds 1.3, that is the case in most of the experiments space. For lower branching
factor values, CMTreeMiner has a small advantage. Closed frequent trees with such a low branching factor
necessarily have a high depth, this is confirmed by Fig. 17(b). This figure shows that DRYADEPARENT

exhibits a linear dependency on the depth of the closed frequent trees. This is not surprising: each iteration
of DRYADEPARENT computes one more depth level of the closed frequent trees, so very deep closed
frequent trees will need more iterations.

CMTreeMiner, on the other hand, shows a dependency on the average branching factor, but for a given
value of b the computation time varies greatly, being especially highfor low depth values. Because of
the constraints on the random tree generator, a tree that hasa low depth with a high average branching
factor will necessarily have some nodes with a very large branching factor. We plotted in Fig. 18 a new
curve, showing the computation time with respect to themaximalbranching factor.

DRYADEPARENT is nearly unaffected by the maximal branching factor, but the computation time of
CMTreeMiner depends strongly on this parameter. In order tounderstand how much the behavior of

����
��
��
��
��

 1.5 1 2 2.5 3 3.5 4 4.5 5

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

100 nodes trees

DryadeParent
CMTreeMiner

Average branching factor

Lo
g(

tim
e)

 4

 3

 2

 1

 0

−1

−2

−3

������
���
���
���
���

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

−3

−2

−1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100

Lo
g(

tim
e)

Depth

100 nodes trees

DryadeParent
CMTreeMiner

(a) Log(time)/average branching factor (b) Log(time)/depth

Fig. 17. Random trees with 100 nodes

����
��
��
��
��

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

DryadeParent
CMTreeMiner

−3

−2

−1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80

Lo
g(

tim
e)

Maximal branching factor

100 nodes trees

Fig. 18. Random trees with 100 nodes, log(time) w.r.t. maximal branching factor

CMTreeMiner and DRYADEPARENT differ, we analyze below the reasons of the dependency to branching
factor of CMTreeMiner, and of the variability of its performances in general.

We give a brief reminder of the candidate enumeration technique of CMTreeMiner, the rightmost branch
expansion. To generate candidates withk nodes from a frequent tree withk − 1 nodes, CMTreeMiner
tries to add a new edge connecting to a node of known frequent label and starting at a node of the
rightmost branch of thek − 1 node tree. All the nodes of the rightmost branch are exploredsuccessively
in a top-down fashion, from the root to the rightmost leaf.

1. Branching factor leads CMTreeMiner to generate more unclosed candidates by backtracking.
For a node with high branching factor, finding correctly the set of its frequent children is a classical
frequent itemset mining problem, and the highly combinatorial nature of this problem often leads to
the generation of useless candidates. CMTreeMiner is no exception to this rule: its top-down rightmost
branch expansion technique finds very quickly all the children of a node, but then needs to systematically
backtrack to check for frequent subsets of these children. In most cases, this leads to the generation of
non-closed candidates. For example, compare the two closedfrequent trees of Fig. 19. The linear treeP1

is found without generating any unclosed candidates. But the flat treeP2 is found after the generation of
3 unclosed candidates, so according to our experiments finding P2 needs 7% more time than findingP1

in this simple setting with 4 nodes, and 100% more time in a similar setting with 11 nodes.
DRYADEPARENT also has to confront such a combinatorial problem in high branching factor cases, but

it does so by using the LCM2 closed frequent itemset mining algorithm, which provides as of now the
most efficient way to explore the search space of closed frequent itemsets. Furthermore, by discovering the
tiles once and for all at the beginning of the algorithm, DRYADEPARENT avoids to repeat these complex
computations if the same tile appears more than once in the closed frequent trees.

A

B

C

D

A

B C D

A

B

C

A

B

C

D

A

B

A

A

B

A

B C DB C

AA

B

A

D

A

A

C

D Backward enumeration step

Candidates

Candidates

Forward enumeration step

C0 C1 C2 C3

C0 C1 C2 C3

C4C5

C6

P1

P2

Fig. 19. CMTreeMiner candidate enumeration for a linear tree and for a flat tree

On this problem, CMTreeMiner could probably be improved by modifying its enumeration technique
in order to use LCM2 for sibling enumeration. Such a modified algorithm should be similar to the recent
CLOTT algorithm by Arimura and Uno, which is an extension of the LCM2 principles to the closed
attribute tree case.

2. Candidate generation asymmetryThe previous problem explains partly why CMTreeMiner is
slower than DRYADEPARENT in most cases. As we have seen, this problem can theoretically be overcome.
However, another problem remains, that cannot be overcome easily, and this problem is essential to the
superior performances of our hooking strategy over any algorithm based on rightmost branch expansion.

Consider the simple closed frequent tree of Fig. 20. As it canbe seen, during candidate enumeration,

Closed frequent tree

A

A

C

A

B

B C

A

B C

A

D

expand B

expand B

exp
and A

B C

A

D E

B C

A

D E

A

B

D E

A

B

D

A

B

E

Backward enumeration step

Candidates

exp
and A

expand A

Forward enumeration step

C0 C1

C2

C3

C8

C7

C4

C5 C6

Fig. 20. CMTreeMiner enumeration for a left-balanced closed frequent tree

unwanted candidates are generated, because the rightmost leaf expansion technique has to test “blindly”
all the potential expansions on the rightmost branch, but can only grow good candidates for certain
expansions. For example, the candidateC2 contains correct information: it corresponds to the first level
of the closed frequent tree to find. But as some expansions must be made on the node labeledB, which
is not on the rightmost branch ofC2, thenC2 is eliminated. In the same way,C4 is computed for nothing.

The children with labelC of the root node will have to be recomputed in candidateC6, even if it could
have been discovered much earlier.

This behavior is not only sub-optimal, it also undermines the robustness of CMTreeMiner. Consider
the two closed frequent trees of figure 21. Except for the names of labels, both these closed frequent trees

A

D ECB

F G H I

K L M N

A

D ECB

F G H I

K L M N

L R

Fig. 21. L: left-balanced closed frequent tree,R: right-balanced closed frequent tree

exhibit the same tree structure, so it is expected that they are discovered in exactly the same amount of
time. However, assuming that the sibling processing order is the ascending order of labels (this is the
case in the actual implementation of CMTreeMiner), closed frequent treeR, which is right-balanced, is
an ideal case for enumeration by rightmost tree expansion. CMTreeMiner will check 43 candidates to
discover it. On the opposite, the left-balanced closed frequent treeL is a worst case, and CMTreeMiner
will require to check 79 candidates for its discovery. The computation times reflect this difference in
candidates checking: time for findingL is 50 % higher than time for findingR, as shown in Tab. I.

Closed Frequent Tree R L

CMTreeMiner 0.0010 s 0.0015 s
DRYADEPARENT 0.0013 s 0.0013 s

TABLE I

COMPUTATION TIME FOR FINDING CLOSED FREQUENT TREESR AND L

On the other hand, thanks to its tree-orientation neutral hooking technique, DRYADEPARENT requires
exactly the same amount of time for processing these two closed frequent trees. For bothL and R,
DRYADEPARENT will generate 3 candidates: 1) the initial tile with rootA, 2) a candidate generated by
hooking of a tile on respectivelyB or E, 3) the closed frequent treeL or R by hooking of another tile
on respectivelyF or I.

Last, we compared the scalability of DRYADEPARENT and CMTreeMiner both on time and space in
Fig. 22. The dataset consists of 1,000 to 10,000 copies of a unique perfect binary tree of depth 5. We

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

)

Number of instances

Binary trees, depth 5
DryadeParent
CMTreeMiner

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
em

or
y

(M
B

)

Number of instances

Binary trees, depth 5
DryadeParent
CMTreeMiner

Fig. 22. Scalability tests, binary trees (time - memory)

can see that both on time and space, DRYADEPARENT scales linearly. The memory usage is higher for

DRYADEPARENT, but here the reason is mostly implementation specific: for example DRYADEPARENT

integer type is “integer” whereas CMTreeMiner’s one is “short”, which is 4 times smaller on our 64 bit
machine. And DRYADEPARENT internal representation for trees is based on trees of pointers, which uses
the most memory, especially on a machine where the pointers are 8 bytes long.

Complexity issues:Here we evaluate the validity of our complexity analysis of Section IV when
compared to the actual results, for the artificial dataset.

Fig. 23 compares the logarithm of the processing time for thereal algorithm with the logarithm of the
complexity formula of Section IV), w.r.t. (a) number of tiles and (b) average branching factor (the linear
behavior of the algoritm w.r.t. depth has already been ascertained in Fig. 17 (b)). For a given number of
tiles (Fig. 23 (a)) or average branching factor (Fig. 23 (b)), there are several trees with different shapes
satisfying this constraint, leading to different processing times or estimates. The shaded area of the figures
represents all these processing times (for the real algorithm) or estimates (for the complexity estimate).

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
�������������������������������������

���
���
���

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 20 30 40 50 60 70 80 90 100
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

 20 30 40 50 60 70 80 90 100

Program results Complexity estimate

log(Program time)

Number of tiles

lo
g(

tim
e)

log(Complexity estimate)

Number of tiles

lo
g

(a) Log(time)/number of tiles

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 1 1.5 2 2.5 3 3.5 4 4.5 5

Complexity estimate

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

Program results

log(Program results) log(Complexity estimate)

average branching factor average branching factor

lo
g

lo
g(

tim
e)

(b) Log(time)/average branching factor

Fig. 23. Comparing real processing time and estimated complexity

On Fig. 23 (a), the estimated curve and the real times match well for more than 50 tiles, but for a lesser
number of tiles, the real times curve presents a gentler slope than the complexity estimate. For a high
number of tiles, DRYADEPARENT spends most of its time on hooking tiles, with a lot of iterations. The
startup time needed for loading the data and creating all needed data structures is negligible compared to
the total time in these cases. But for lower numbers of tiles,there are fewer iterations and DRYADEPARENT

is very fast at completing them. So the startup time is no longer negligible compared to the total times
in such cases. Such startup processings are not taken into account in the complexity formula, hence the
difference occurs between the two curves.

The same behavior can be observed in Fig. 23 (b), for high branching factor cases the real algorithm
performs fewer hookings and hence is limited by startup time, which is not reflected in the complexity
estimate.

One can also note a visible discontinuity on the curves for the complexity estimate. This discontinuity
reflects the behavior of our artificial data generator. For average branching factors above 1.9, the generator
is allowed to produce nodes with very high branching factor,whereas it is not possible below it. This
allows an efficient generation of artificial trees satisfying the given constraints, at the price of smoothness.

The curves for DRYADEPARENT also present this discontinuity, although it is less visible.
As a conclusion, the complexity estimates that we provided seem to capture well the behavior of the

DRYADEPARENT algorithm, especially when the algorithm has enough hooking work to do.

B. Real datasets

In the tree mining literature, two real-world datasets are widely used for testing: the NASA dataset
sampled by Chiet al. from multicast communications during a shuttle launch event [25], and the CSLOGS
dataset consisting of web logs collected over one month at the CS department of Rensselaer Institute [19].

The runtimes obtained for various frequency thresholds forboth DRYADEPARENT and CMTreeMiner
are displayed on Fig. 24.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e(
s)

Support

Nasa/Multicast

DryadeParent
CMTreeMiner

 0

 2

 4

 6

 8

 10

 12

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

T
im

e(
s)

Support

CSLOGS

DryadeParent
CMTreeMiner

Fig. 24. Running time w.r.t. support for the Nasa/Multicastand CSLOGS datasets.

DRYADEPARENT is more than twice faster than CMTreeMiner on the CSLOGS dataset. For the
NASA dataset the performances are similar for high and medium support values, DRYADEPARENT

having a distinct advantage for the lowest support values. Note that we obtained similar results with
simplified CSLOGS and NASA datasets consisting only of attribute trees. We were interested to know
why DRYADEPARENT and CMTreeMiner have a bigger performance difference on theCSLOGS dataset
than on the NASA dataset. Analyzing the structure of the computed closed frequent trees in both cases,
we found that in the CSLOGS dataset, for the support value 0.003 (lowest value tested), there are 924
closed frequent trees, with 3 nodes on average, and an average branching factor of 1.6. For the NASA
dataset, the picture is different: at the support value 0.1,there are 737 closed frequent trees, with 42 nodes
on average, an average depth of 12 and an average branching factor of 1.2.

Discussion: Our artificial experiments have shown that the structure of the closed frequent trees to
find, especially their branching factor, is a crucial performance factor. The closed tree mining algorithm
CMTreeMiner, based on candidate enumeration by rightmost branch expansion, has performances which
vary considerably with the branching factor of the closed frequent trees, and even with their balance. The
fact that CMTreeMiner and DRYADEPARENT have similar performances on the NASA dataset, with closed
frequent trees having quite low branching factor, and that CMTreeMiner is slower than DRYADEPARENT

on the CSLOGS dataset, with closed frequent trees having a higher branch factor, is consistent with our
experiments on artificial data.

Experiments have shown that the new method for finding closedfrequent attribute trees of our DRYADE-
PARENT algorithm is not only computation-time efficient but also robust w.r.t. tree structure, delivering
good performances with most tree structure configurations.Such a robustness is a desirable feature for
most applications, especially the applications which dealwith trees having a great diversity of structure,
for which the typical structure of closed frequent trees cannot be predicted.

C. XML application example

In this last series of experiments, we show the analysis of a corpus of real XML data. This corpus
comes from theXMLMining Challenge, compiled by Ludovic Denoyer [26]. We used the “Movie” corpus,

initially designed for a mapping task. The training part of this corpus has the advantage to contain well
formed XML documents with meaningful tags, each document describing one movie.
Preprocessing:We preprocessed this corpus in the following way:

• For all leaf tags corresponded aPCDATA stringgiving the value associated to this tag (for example
a tag “name” could have as associated PCDATA “John Wayne”). All the PCDATA of these tags were
processed to get rid of punctuation signs and convert the text into lower cases. In case of strings with
spaces, like in “John Wayne”, the spaces were replaced by underscores, with a prefixing underscore,
like in “ john wayne” (so that the Perl parser we used could handle numeral strings like “ 1941”).
These normalized strings were used as labels of new nodes added as children of the labeled nodes
which the original strings where values of.

• We made minor alterations to the structure in order to convert the original trees to attribute trees.
For this, tags that represented list items were replaced with their children, i.e. by their actual content.
For example each actor in a movie was represented by a tag named “entry” under a main “cast”
tag, and inside this “entry” tag where a “name” and one or more“roles” tags. We suppressed these
intermediary tags and instead created a new tag with the actual name of the actor, which became a
child of the “cast” tag. The roles of this actor became children of the tag bearing the name of the
actor.

• There are two tags, “synopsis” and “review”, whose data is a short text respectively describing the
movie and reviewing it. Each text was cut into words, the stopwords like “the”, “and”, etc. where
suppressed from this list of words, for each word only one of its occurrences was kept, and all the
remaining words became new tags added as leaves of the “synopsis” and “review” tags.

Performances: In the first experiment, we preprocessed 100 documents of the693 from the collection,
and fed them as input to DRYADEPARENT and CMTreeMiner in order to analyze the computation time
performances. The results are given in Fig. 25 (a), with the average branching factor of the closed frequent
trees in Fig. 25 (b). There are no results under a support value of 40%, as in this case DRYADEPARENT

saturated the memory.

 70
Support

 60

 50

 40

 30

 20

 10

 0
 40 50 60 80

XMLMovie, 100 documents

 90 100

DryadeParent
CMTM

T
im

e
(s

) branching factor

 6.5

 6

 5.5

 5

 4.5

 4
 40 50 60 70 80 90 100

B
ra

nc
hi

ng
 fa

ct
or

Support

Average closed frequent tree

XMLMovie, 100 documents

(a) Computation time (b) Average closed frequent tree branching factor

Fig. 25. Comparative results for DRYADEPARENT and CMTreeMiner with the XMLMovie dataset

The closed frequent trees have a high branching factor: as expected from the previous experiments, for
high support values DRYADEPARENT largely overperforms CMTreeMiner. Surprisingly, for lower support
values the contrary happens. To understand why this was happening, we analyzed carefully the time spent
by DRYADEPARENT in its various tasks. We found that for a support value of 40%,it was spending 74%
of its computation time making closure tests (which corresponds to line 5 of Algorithm 2). The problem
is that as we stated in our introduction, DRYADEPARENT has been designed with heterogeneous datasets
in mind, that is data from various organizations about the same topics. Because of the very nature of
such datasets, they are currently very difficult to find. The publicly available datasets, like the one we
use here, usually come from the same organization, so are very homogeneous. The consequence is that a
lot of closed frequent trees are nearly identical, and so a lot of hookings also resemble each other, with
subtle differences. Our closure test has been written in a rather naive way: it first looks for exact hooking

matches in the database, and then for bigger (the current hooking is included in a bigger hooking of the
database) and smaller matches (the current hooking includes a smaller hooking of the database), iterating
on all the possible cases of bigger/smaller matches. Usually this is very fast because there are not so much
cases to examine, but with a very homogeneous dataset as XMLMovie it became a bottleneck. On the
opposite, the edge adding strategy of CMTreeMiner is more performant here: the fact that all the closed
frequent trees resemble each other means that it has fewer candidates to expand, so what is a bad case
for DRYADEPARENT is a good case for CMTreeMiner.

To evaluate the behavior of both algorithms on more heterogeneous data, we derived a new dataset
from XMLMovie. The XMLMovie documents are all rooted with the “movie” tag. We divided our 100
documents into 10 groups{G1, ..., G10}, chose 10 arbitrary tags{t1, ..., t10}, and in each groupGi, for
all the documents of this group made the tagti replace the tag “movie” at the root of the tree, so that
for all i ∈ [1, 10] documents inGi are rooted by tagti. The new dataset, called XMLMovieHtr, is much
more heterogeneous: all documents are on the same topic and share common tags, however the small
difference in the roots avoids homogeneity and gives more importance to the closed frequent trees not
using this root.

The performances for the processing of XMLMovieHtr are shown on Fig. 26 (a), with the average
branching factor of the closed frequent trees in Fig. 26 (b).

 5

 2

 4

 6

 3

 1
 0

−1
−2

 0 10 20 30 40 50 60 70 80 90 100

DryadeParent
CMTM

Support

Lo
g(

tim
e)

XMLMovieHtr, 100 documents
 8
 7

 4

 3.5

 3

 2.5

 2

 1.5

 1
 0 10 20 30 40 50

Average closed frequent tree

 60 70 80 90 100
Support

A
ve

ra
ge

 b
ra

nc
hi

ng
 fa

ct
or

XMLMovieHtr, 100 documents

branching factor

(a) Logarithm of computation time (b) Average closed frequent tree branching factor

Fig. 26. Comparative results for DRYADEPARENT and CMTreeMiner with the XMLMovieHtr dataset

This time both algorithms could correctly process the data for all support value. The computation time
difference was important between DRYADEPARENT and CMTreeMiner, so we had to use a logarithmic
scale for the time in Fig. 26 (a). For all support values, evenif closed frequent trees to find were complex
and numerous (more than 20,000 at support = 2%), DRYADEPARENT could achieve a several order of
magnitude improvement over CMTreeMiner, processing the data in 45s for a support of 2%, whereas
CMTreeMiner needed 2846s. So as expected, DRYADEPARENT is far better adapted for heterogeneous
data than CMTreeMiner.
Closed frequent trees analysis:We now show how the closed frequent trees found could be useful in an
XML data mining application. A first interest, in such homogeneous data, is to find a schema common to
all of the documents analysed, which could stand for a very basic DTD (theDocument Type Definition,
or DTD, is the “grammar” of an XML document. More resources about XML can be found at [27]),
especially in cases like XMLMovie where the documents are homogeneous but no DTD was formally
defined. This is close to grammatical inference [28], but thegoal of grammatical inference on XML data
is to find the complete DTD of all the XML documents [29], whichis beyond the scope of frequent tree
mining. So we ran DRYADEPARENT on XMLMovie with a support of 100%, the closed frequent tree
found is shown in Fig. 27. We are assured that all the documents will contain this closed frequent tree,
which can for example be useful for designing queries on these documents.

With lower support values, the closed frequent trees also allow to extract precise information from the
data. The next closed frequent trees come from the mining of XMLMovieHtr with a support value of 5%.

Following the node nesting:

author

movie

title year countries length categories amg_rating director genres keywords tones synopsis cast production

Fig. 27. Common schema to all the 100 documents of XMLMovie

_available_in_colorized_version

categories

_feature _bw
_art_director

production

_cedric_gibbons

statuses

_academy

awards

_best_director_nom _best_actor_nom _best_picture_nom

_directors_guild_of_america _academy

(a) Horizontal closed frequent tree (b) Vertical closed frequent tree (c) Hybrid closed frequent tree

Fig. 28. Some closed frequent trees extracted from XMLMovieHtr with a support value of 5%

• The information can have an horizontal organization, like in Fig. 28 (a). Here the closed frequent
tree could have been found by a simple frequent itemset mining algorithm, it represents frequent
children of the “categories” node. We learn that “features”that are in black and white (“bw”) often
are available in a colorized version.

• The information can have a vertical organization, like in Fig. 28 (b). Here, through the nesting
of nodes expressing data and of nodes expressing what this data represents, we can learn that the
individual “Cedric Gibbons” was a member of the production team of at least 5 movies, and that his
job was to be the art director.

• Finally, most closed frequent trees, like in Fig. 28 (c), combine vertically and horizontally organized
information, which is the major advantage of tree mining. Here we learn that at least 5% of the
movies are nominated (“nom” suffix after an award name) for the following awards: best director
for the directors guild of America, best actor and best picture for the Academy awards. This closed
frequent tree can lead to many interpretations, for instance that good movies are associated with the
combination of a good director and a good main actor.

Some closed frequent trees can allow an even finer analysis ofthe data. Consider the closed frequent
tree of Fig. 29, extracted from XMLMovieHtr with a support of2%.

title year countries length categories amg_rating director genres flags keywords themes tones moods producers

_usa _feature _color _5_stars _comingofage _adult_situations _comingofage _generationgap _generation_gap

awards

_best_supporting_actress_nom _us_national_film_registry_win _100_greatest_american_movies_win

_academy _library_of_congress _1998 _american_film_institute

_school _follows _runs _wave _parents _rebellion _opened _door

synopsis cast production related_similar related_personnel related_theme

author _director _relationship _films _best _mr _robert _leading _possible _landmark _new _good _written

review

author _classic _films _film _remains _landmark _world _generation _trying _parents _alienation _prosperity

_rebecca_flint

_older

Fig. 29. Biggest closed frequent tree from XMLMovieHtr witha support of 2%

This big closed frequent tree is shared by two movies “Rebel without a cause” (1955) and “The
Graduate” (1962). Both of these films are American, were big successes, won awards and have a 5 star
AMG rating. But more important, the closed frequent tree wasable to capture well what is common to
these movies: they are movies about “coming of age” and “generation gap” (from the keywords), words like
“rebellion” and “parents” appear in the synopsis, and wordslike “generation”, “parents”, “alienation” and
“prosperity” appear in the review. Such words seem to characterize well both films made in a prosperous
America, but were the young people were less and less attracted by their parents model and tried to find
another way of life. Searching Google with these two film names together confirmed that these two films
are grouped together by sociologists when analyzing the America of the fifties-sixties (see for example
[30], found at http://www.lib.berkeley.edu/MRC/nickray.html). The shopping site Amazon.com also
rates the two movies as similar. So what is very interesting with that closed frequent tree is that it could
group together two similar movies, and even provide elements to describe what make them similar. Such
kind of closed frequent trees are particularly useful for conceptual clustering, by grouping together similar
elements and characterizing the cluster. The particular advantage here, due to the structural analysis of
XML data, is to provide very fine grained information, that could be particularly useful to people doing
a detailed analysis of the data.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the DRYADEPARENT algorithm, based on the computation of tiles
(closed frequent attribute trees of depth 1) in the data, andon an efficient hooking strategy that reconstructs
the closed frequent trees from these tiles. This hooking strategy is radically different from current tree
mining approaches like CMTreeMiner. Whereas CMTreeMiner uses a classical generate and test strategy
building candidate trees edge by edge, the hooking strategyof DRYADEPARENT finds a complete depth
level at each iteration, and does not need expensive tree mappings tests.

Thorough experiments have shown that DRYADEPARENT is faster than CMTreeMiner in most settings.
Moreover, the performances of DRYADEPARENT are robust w.r.t. the structure of the closed frequent trees
to find, whereas performances of CMTreeMiner are biased towards trees having most of their edges on
their rightmost branch.

We also have shown that in the analysis of XML data, as long as the data is heterogeneous DRYADE-
PARENT can provide excellent performances, allowing near real-time analysis. We also have shown that
the closed frequent trees found could capture very interesting information from the data.

We have proposed new benchmarks taking into account the structure of the closed frequent trees to test
the behavior of tree mining algorithms. As far as we know, such kind of tests is new in the tree mining
community.

Improving these benchmarks and making more detailed analyses are some of our future research direc-
tions. We think that our experiments proved that such tools are valuable for the tree mining community.
We also plan to extend DRYADEPARENT to structures more general than attribute trees.

ACKNOWLEDGEMENTS

We wish to thank especially Takeaki Uno for the LCM2 implementation, and Yun Chi for making
available the CMTreeMiner implementation and giving us theNasa dataset. This work was partly supported
by the grant-in-aid of scientific research No. 16-04734.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Eleventh International Conference on Data Engineering,
P. S. Yu and A. S. P. Chen, Eds. Taipei, Taiwan: IEEE Computer Society Press, 1995, pp. 3–14. [Online]. Available:
citeseer.ist.psu.edu/agrawal95mining.html

[2] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery offrequent episodes in event sequences,”Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 259–289, 1997. [Online]. Available: citeseer.ist.psu.edu/mannila97discovery.html

[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa, “Efficient substructure discovery from large semi-structured
data,” in In Proc. of the Second SIAM International Conference on DataMining (SDM2002), Arlington, VA, Avril 2002, pp. 158–174.

[4] A. Inokuchi, T. Washio, and H. Motoda, “Complete mining of frequent patterns from graphs: Mining graph data,”Mach. Learn., vol. 50,
no. 3, pp. 321–354, 2003.

[5] M. Kuramochi and G. Karypis, “An efficient algorithm for discovering frequent subgraphs,”IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 9, pp. 1038–1051, 2004.

[6] J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla, “Aggregated multicast - a comparative study,” inNETWORKING
’02: Proceedings of the Second International IFIP-TC6 Networking Conference on Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks; and Mobile and Wireless Communications. London, UK: Springer-Verlag,
2002, pp. 1032–1044.

[7] D. Shasha, J. T. L. Wang, and S. Zhang, “Unordered tree mining with applications to phylogeny,” inICDE ’04: Proceedings of the
20th International Conference on Data Engineering. Washington, DC, USA: IEEE Computer Society, 2004, p. 708.

[8] M. J. Zaki, “Efficiently mining frequent trees in a forest: Algorithms and applications,”IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 8, pp. 1021–1035, 2005.

[9] L. H. Yang, M. L. Lee, W. Hsu, and S. Acharya, “Mining frequent query patterns from XML queries,” inDASFAA ’03: Proceedings
of the Eighth International Conference on Database Systemsfor Advanced Applications. Washington, DC, USA: IEEE Computer
Society, 2003, p. 355.

[10] M. J. Zaki and C. C. Aggarwal, “XRules: An effective structural classifier for xml data,” inSIGKDD 03, Washington, DC, 2003.
[Online]. Available: citeseer.ist.psu.edu/zaki03xrules.html

[11] A. Termier, M. Rousset, and M. Sebag, “Dryade : a new approach for discovering closed frequent trees in heterogeneous tree databases,”
in International Conference on Data Mining ICDM’04, Brighton, England, 2004, pp. 543–546.

[12] H. Arimura and T. Uno, “An output-polynomial time algorithm for mining frequent closed attribute trees,” in15th International
Conference on Inductive Logic Programming (ILP’05), 2005.

[13] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz, “CMTreeMiner: Mining both closed and maximal frequent subtrees,” inThe Eighth
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’04), 2004.

[14] P. Kilpeläinen, “Tree matching problems with applications to structured text databases,” Ph.D. dissertation, Department of Computer
Science, University of Helsinki, November 1992, tR A-1992-6.

[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets for association rules,” in Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, 1999.

[16] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” inProceedings of the 20th VLDB Conference, Santiago,
Chile, 1994.

[17] M. J. Zaki and C.-J. Hsiao, “Charm: An efficient algorithm for closed itemset mining,” inIn Proc. 2nd SIAM International Conference
on Data Mining, Arlington, April 2002.

[18] T. Uno, M. Kiyomi, and H. Arimura, “LCM v.2: Efficient mining algorithms for frequent/closed/maximal itemsets,” in2nd Workshop
on Frequent Itemset Mining Implementations (FIMI’04), 2004.

[19] M. J. Zaki, “Efficiently mining frequent trees in a forest,” in In Proc. 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, July 2002.

[20] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano, “Discovering frequent substructures in large unordered trees,” inthe Proc. of the 6th
International Conference on Discovery Science (DS’03), 2003, pp. 47–61.

[21] S. Nijssen and J. N. Kok, “Efficient discovery of frequent unordered trees,” inFirst International Workshop on Mining Graphs, Trees
and Sequences, 2003.

[22] Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham, “Efficient data mining for maximal frequent subtrees,” inICDM ’03: Proceedings of the
Third IEEE International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society, 2003, p. 379.

[23] M. J. Zaki, “Efficiently mining frequent embedded unordered trees,”Fundamenta Informaticae, special issue on Advances in Mining
Graphs, Trees and Sequences, vol. 65, no. 1-2, pp. 33–52, March/April 2005.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to Algorithms, 2nd ed. The MIT Press, 2001, ch. Dynamic
Programming, pp. 323–369.

[25] R. Chalmers and K. Almeroth, “Modeling the branching characteristics and efficiency gains of global multicast trees,” in Proceedings
of the IEEE INFOCOM’2001, April 2001.

[26] L. Denoyer, “XML mining challenge,” 2006, http://xmlmining.lip6.fr/Corpus.
[27] W. Consortium, “Extensible markup language (XML) 1.0 (fourth edition),” 2006, http://www.w3.org/TR/REC-xml/.
[28] E. Gold, “Language identification in the limit,”Information and Control, vol. 10, pp. 447–474, 1967.
[29] Y. Papakonstantinou and V. Vianu, “DTD inference for views of XML data,” inProceedings of SIGMOD, 2000.
[30] I. C. Jarvie, “America’s sociological movies,”Arts in Society, vol. 10, no. 2, pp. 171–181, Sum-Fall 1973.

Alexandre Termier is an Assistant Professor of Computer Science at the University of Grenoble. His research interests
include data mining, parallelism and peer to peer networks.For data mining, he is especially interested in mining trees
and directed acyclic graphs. He received a Ph.D. degree fromthe University of Paris-South in 2004.

Marie-Christine Rousset is a Professor of Computer Science at the University of Grenoble. Her areas of research
are Knowledge Representation and Information Integration. In particular, she works on the following topics: logic-
based mediation between distributed data sources, query rewriting using views, automatic classification and clustering
of semistructured data (e.g., XML documents), peer to peer data sharing, distributed reasoning. She has published
over 70 refereed international journal articles and conference papers, and participated in several cooperative industry-
university projects. She received a best paper award from AAAI in 1996, and has been nominated ECCAI fellow in
2005. She has served in many program committees of international conferences and workshops and in editorial boards
of several journals.

Michèle Sebaggraduated at Ecole Normale Suprieure in Paris in Maths; she received her PhD in Computer Science
in 1990 and her Habilitation in 1997. She is with the CNRS, Centre National de la Recherche Scientifique, since 1991,
senior researcher (Directeur de Recherche) since 2003. Primarily grounded in applications for Numerical Engineering,
her research interests include Relational Learning and Inductive Logic Programming, Ensemble Methods, Evolutionary
Computation and Genetic Programming, and Statistical Learning. She is on the Editorial Boards of Machine Learning
Journal, and Genetic Programming and Evolvable Hardware; she is Associate Editor for Knowledge and Information
Systems and was Associate Editor for IEEE Trans on Evolutionary Computation from 1997 to 2003.

Kouzou Ohara (M’98) received the M.E. degree in information and computersciences from Osaka University, in
1995. He also received the Ph. D. degree from Osaka University in 2002.
He is currently an Assistant Professor of the Institute of Scientific and Industrial Research, Osaka University. His
research interests include machine learning, data mining,and personalization of intelligent systems.
He is a member of the IEEE, the AAAI, the IEICE, the IPSJ and theJSAI.

Takashi Washio is a professor in Institute of Scientific and Industrial Research (ISIR), Osaka University. He obtained
his Ph.D. in Nuclear Engineering at Tohoku University, Japan in 1983 on the topic of process plant diagnosis based
on qualitative reasoning. At ISIR, Osaka University, he works on the study of scientific discovery, graph mining and
high dimensional data mining. He received the best paper award from Atomic Energy Society of Japan in 1996, the
best paper award from Japanese Society for Artificial Intelligence in 2001 and Journal Award of Computer Aided
Chemistry in 2002.

Hiroshi Motoda is a professor emeritus of Osaka University and a scientific advisor of AFOSR/AOARD (Asian
Office of Aerospace Research and Development, Air Force Office of Scientific Research, US Air Force Research
Laboratory). His research interests include machine learning, knowledge acquisition, scientific knowledge discovery
and data mining. He received his Bs, Ms and PhD degrees in nuclear engineering from the University of Tokyo. He is
a member of the the steering committee of PAKDD, PRICAI, DS and ALT. He received the best paper awards twice
from Atomic Energy Society of Japan (1977, 1984) and three times from JSAI (1989, 1992, 2001), the outstanding
achievement awards from JSAI (2000) and Okawa Publication Prize from Okawa Foundation (2007).

