1234

DRYADEPARENT, an efficient and robust closed
attribute tree mining algorithm

Alexandre Termier, Marie-Christine Rousset, Mitd Sebag, Kouzou Ohara,
Takashi Washio and Hiroshi Motoda

Abstract

In this paper, we present a new tree mining algorithmryEDEPARENT, based on the hooking principle first
introduced in ORYADE. In the experiments, we demonstrate that the branchingrfastd depth of the frequent
patterns to find are key factors of complexity for tree minahgorithms, even if often overlooked in previous work.
We show that [RYADEPARENT outperforms the current fastest algorithm, CMTreeMingrobders of magnitude
on datasets where the frequent tree patterns have a higbhimgrfactor.

Index Terms

Data mining, mining methods and algorithms, mining treacttrred data.

I. INTRODUCTION

N the last ten years, the frequent pattern discovery taskatd chining has expanded from simple

itemsets to more complex structures: for example sequdtgespisodes [2], trees [3] or graphs [4],
[5]. In this paper we focus ofree mining that is finding frequent tree-shaped patterns in a databiase
tree-shaped data. Tree mining can lead to many practicdlcappns in the areas of computer networks
[6], bioinformatics [7], [8], XML documents databases nmgi[9], [10], and hence have received a lot of
attention from the research community in recent years. Mbghe well-known algorithms use the same
generate-and-test principle that made the success ofdnegiemset algorithms. The main adaptation to
the tree case is the design of efficient candidate tree emtimieralgorithms in order to avoid generating
redundant candidates, and to enable efficient pruning. Mexthe search space of tree candidates is huge,
particularly when the frequent trees to find have both higptldeand high branching factor. Especially
the high branching factor case has received very littlentitie by the tree mining community. However,
performances of existing algorithms are dramaticallyaéd by the branching factor of the tree patterns
to find, as shown in our experiments.

Starting from this observation, we have developed tmeyADEPARENT algorithm. This algorithm is
an adaptation of our earlier algorithmrRADE [11]. DRYADE is based on a more general tree inclusion
definition appropriate for mining highly heterogeneoudemilons of tree data. ByYADEPARENT follows
the same principles of RY¥ADE, but uses a standard inclusion definition [12], [13] to makssible
performance comparison with other existing systems basedifterent principles. We will show in this
paper that RYADEPARENT outperforms the up-to-date CMTreeMiner algorithm [13]datonduct a
thorough study on the influence of structural charactesstif the tree patterns to find, like depth and
branching factor, on the computation time performance ah lagorithms.

The outline of the paper is as follows. Section Il introdutesnotations and definitions used throughout
the paper. Section Il presents and discusses the state afttin tree mining. Section IV gives an overview

Alexandre Termier and Marie-Christine Rousset are with lth@, University of Grenoble, 681 rue de la Passerelle, BP 38402 St
Martin d’Heres Cedex, France. Contact author e-n{ailexandre. Termier@imag.fr This work was realized while A. Termier was at Osaka
University in the former team of Pr. Hiroshi Motoda.

Michele Sebag is with the CNRS & Université Paris-Sud (LRI INRIA (Futurs), Building 490, Université Paris-Sud, 405 Orsay
Cedex, France.

Kouzou Ohara and Takashi Washio are with the 1.S.1.R., Osakeersity, 8-1, Mihogaoka, Ibarakishi, Osaka, 567-004apan.

Hiroshi Motoda is with the AOARD/AFOSR, Air Force Researcabloratory, 7-23-17 Roppongi, Minato-ku, Tokyo 106-003pah.

of the DRYADEPARENT algorithm. Section V reports detailed comparative expents, both on real and
artificial datasets, as well as an application example withi_>data. In section VI, we conclude and give
some directions for future work.

[I. FORMAL BACKGROUND

Intuitively, the objective task of the RvyADEPARENT algorithm that we present in this paper is, given
a set of trees and an arbitrary threshe]do discover the biggest tree sub-structures common taaatde
trees of the input set of trees. This is illustrated in thenepi® of Fig. 1. The sub-structur@S containing

Fig. 1. A set of trees and their common sub-structuresfer 2

the nodesB, C and D appears inl; and7s, i.e. 2 trees of the input: for a support thresholdsof 2,

it is the only desired result. In this section, we give thep@réheory background necessary to formally
define the task described before. We will first formally defileat a tree is. Then we will show how
to define a tree sub-structure of a treeeé inclusiondefinition), and under which conditions a given
tree sub-structure is considered common to several othes tfrequent treeslefinition). Last, we will
characterize the “biggest” of these tree sub-structurkséd frequent treedefinition).

Trees

Let L = {l4,...,1,} be a set of labels. Aabeled treeT" = (N, A, root(T), ¢) is an acyclic connected
graph, whereN is the set of nodesd C N x N is a binary relation oveN defining the set of edges,
root(T') is a distinguished node called theot, and ¢ is a labelling functiony : N — L assigning a
label to each node of the tree. We assume without loss of gkiyethat edges are unlabeled: as each
edge connects a node to its parent, the edge label can balemtsias part of the child node label. A
tree is anattribute treeif ¢ is such that two sibling nodes cannot have the same labele(ihetails on
attribute trees can be found in [12]). Lete N andv € N be two nodes of a tree. If there exists an edge
(u,v) € A, thenv is achild of u, andu is the parentof v. For two nodes: € N andv € N, if there
exists a set of nodefu, ..., ux } such that(u,u,) € A, (uy,us) € A, ..., (ux,v) € A, then{u, uy, ..., ug, v}
form apathin 7. Thelength of the patiw, u;, ..., uy, v} is |{u, uy, ..., ux, v}| — 1. If there exists a path
from u to v in the tree, then is adescendanof «, andwu is anancestorof v. Let w € N be a node of
a treeT. The length of the path fromoot(T') to u is thedepthof u, denoted bydepth(u).

Tree truncation: Our DRYADEPARENT algorithm has the specificity to discover its objective sreme
level of depth at a time. Consider for example the tfeef Fig. 2 and suppose that it is the objective
of DRYADEPARENT: each iteration will discover one more of its depth leve§odivering firstl}, and’7j
(the first iteration discovers the depth levels 0 and 1), thenn the second iteration, ariff; = 7" in the
last iteration. To characterize these intermediate le¥gls/}; and7},, we introduce thdree truncation
concept: the truncation of a tree at a given depth level st;ginly of the nodes of that tree having
a lesser or equal depth level, and the corresponding eddes.fafrmal definition is as follows. Let
T = (N, A,root(T), p) be a tree, and an integer such that < depth(T). The truncation ofl" at the

Truncations ofl’

Original treeT

Depth O
Depth 1

Depth 2

Depth 3

Fig. 2. A treeT and its truncations

depth leveld is the treeTj; = (Nja, Ajg, root(T'), p) such thatNi; = {n € N | depth(n) < d} and
Aig=A{(u,v) € A | u,v € Njg}.

Tree inclusion

The essential problem for discovering frequent pattern® ibe able to determine if a given pattern
appears or not in the input data. In the case of tree mining, rtteans determining if a pattern tree
is included in any tree of the data. There are many differesysmo define such &ee inclusion the
interested reader is referred to [14] for an extensive stlrdyhis paper, we use the following definition,
which is the basis of many other tree mining algorithms.

Let AT = (Ny, A1, root(AT), ¢1) be an attribute tree anfl = (NV,, Ay, root(T'), p2) be a tree AT is
included inT if there exists an injective mapping: N; — N, such that:

1) p preserves the labelsu € Ny 1 (u) = @o(p(u))

2) n preserves the parent relationshifi, v € Ny (u,v) € A; < (u(u), p(v)) € Asg
This relation will be written asAT C T'. In the tree mining literaturedT is also said to be amduced
subtreeof 7" when using the inclusion definition stated above. Fig. 3 shtive inclusion of an attribute

EM(AT,T) = {1, po, pi3}
Loce(AT,T) = {3,11}
{Image of AT in T':

---> Mapping 1,
——>= Mapping s

S S—— e o e = Mapping u3

Fig. 3. Tree inclusion example (node identifiers are suptcif nodes labels ifl")

tree AT in a treeT’, along two possible mappings or .

If we have AT C T andT [Z AT then we say thatlT is strictly includedinto 7" and we denote it by
AT C T. If AT C T, the set of mappings supporting the inclusion is denoted& B¥(AT, T). In the
example, we hav€ M (AT, T) = {u1, p2}. The set ofoccurrenceof AT in T, denoted byLocc(AT, T),

is the set of nodes of’ onto which the root ofAT is mapped by a mapping &M (AT, T). In the
example,Locc(AT,T) = {3,11}, this corresponds to the identifiers of nodes labeleddbsnapped by
mappingsu; and .

We also introduce the notion afnageof an attribute treed7" in a tree7’. The set of images ofAT
into T is the set of (attribute) trees obtained by mappuifj onto 7" by applying the mappings from
EM(AT,T). In the example, we can see that the imageldf in 7" consists of the nodes @ mapped
from AT by py, and ps.

Frequent attribute trees

We can now define the problem of findifgequent attribute treesn a tree database. LétD =
{T1,...,T,,} be a tree database. Tllatatree D7, is the tree whose root is an unlabeled node, having
the trees{T,...,7,,} as its direct subtrees. Such a datatree is shown in the leftopdrig. 4, where
TD = {T1,T}.

The supportof an attribute treedT in the datatree can be defined in two ways:

o supporty(AT) = > 04(AT,T;) where o,(AT,T;) = 1 if AT C T;, 0 otherwise.(document

support)

o support,(AT) =" 0,(AT,T;) whereo,(AT,T;) = |Locc(AT, T;)| (occurrence support)

In this paper, we are interested in finding attribute treeguent by document support. The tesapport
will now be used for document support. But for the sake of cletemess, our algorithm needs to keep
track of all frequent occurrences, and will use the occuresupport for processing.

Let ¢ be an absolute frequency threshaltd’ is afrequent attribute tre@f Dy p if support,(AT) > e.
The set of all frequent attribute trees is denotedyDrp, <), and by abuse of notation we will only
denote it asF in the rest of this paper.

Frequent trees for = 2:

DataFrAgeDTD
1 =)
:

N 7] 2

Locc: {1,6} {1,6} {27} {4,10}

{1,6} {1,6}

Fig. 4. A datatree with two trees, and all the frequent trees f= 2

The example of Fig. 4 shows all the frequent attribute treesafsupport threshold af = 2.

Closed trees

The problem with frequent trees is that usually, there areynod them, which implies long computation
time. Moreover, lots of these frequent trees contain redahdhformation. For example consider Fig. 4:
treesP;, P,,...,P, are frequent but this is just a byproduct of the fact that tPaeis frequent (if a tree is
frequent, all its subtrees are also frequent). When exagitiie mappings, we can see that the mappings
of P, Ps,...,Py are included in the corresponding mappingsiyj: trees P, P,...,Py do no bring any
new information compared t&;,. So if we could characterize trees suchfag, and only compute those
trees without generating trees likg, P,...,.P, a lot of computation time would be saved.

Such a characterization exists and have been pioneeredshyiBeet al.[15] for frequent itemsets, and
by Chi et al. [13] for trees. It is based on thdosure property Py, is a closed frequent tredntuitively
this means that for its set of mappings, it is the maximal &eeording to inclusion. Formally:

Definition 1: A frequent attribute treedT” € F is closed either if:

« AT € F is not included into any other frequent attribute tré€’ € F
or:

. if AT isincluded into a frequent attribute tred” € F, then there exists a mappingdoM (AT, Drp)
which is not in the mappings &M (AT", Drp).
We will denote the set of all closed frequent attribute trae€’, with the same abuse of notation as
before.

Closed set of trees

Let S C F. The setS is said to beclosedif all the trees ofS are closed relatively to the other trees
of S, i.e. in definition 1F is replaced bys.

Tree mining problem

The tree mining problem we are interested in is to find all lesed frequent attribute trees for a given
datatree and support threshold. The merit of this problethas the number of closed frequent attribute
trees is much smaller than the number of all frequent ateilticees, but the amount of information is
the same in both cases: all the frequent attributes treedbeasasily deduced from the closed frequent
attribute trees. Thus finding such closed trees enablesr faghing without loss of information.

[Il. RELATED WORK

In this section, we will first recall the seminal works aborgdguent itemset mining, and show how
they have been extended to perform frequent tree mining.

A. Itemset mining

The pioneering works for the mining of frequent itemsetsehbeen made by Agrawal and Shrikant,
who introduced the Apriori algorithm for mining frequeneimsets in a propositional database [16]. The
settings are much simpler than the problem of this paperd#ta consists ofransactions which are
sets ofitems The problem is to find frequentemsetsi.e. the sets of items that occur frequently in the
data. To find these frequent itemsets, Apriori usegenerate and teshethod, which means that it will
proceed by generating candidate itemsets, and then tes damdidate itemsets against the data to check
if they are frequent or not. The enumeration of these camelidamsets is done in Evelwisemanner:
first the candidate itemsets of size 1 are generated, theratigidate itemsets of size 2, and so on and so
forth. The candidate itemsets of size 1 are generated by combining together the itemsets ofisizat
passed the frequency test. To prune the search space arelihgrove the performances, the algorithm
uses aranti-monotonicity propertyif a candidate itemsets is found infrequent, then it is not necessary
to build any bigger candidate itemsktsuch that/; C I, as by definition this candidate will necessarily
be also infrequent.

Fig. 5 shows an example execution of the Apriori algorithrhe Data is first transformed into a matrix
representation, easier to use for counting frequency. énfitlst iteration, the candidates of size 1 are
generated (all the single items), and their support is cdetpulhe frequency threshold being set to 2,
only the itemFE' is not frequent and does not make it to the next iteration.tiAd other candidates of
size 1 are frequent itemsets, and are combined togetheeratidn to make candidate itemsets of size
2. The frequency of these candidates is computed, and iuisdféhat only{ B, D} is not frequent. The
other candidates are frequent itemsets, and are combigethtr in the third and last iteration to give the

candidates of size 3. Note that even{iB, C'} and {C, D} are frequent the candida{e3, C, D} is not
constructed. This comes from the fact td&, D} c {B,C, D}, and{B, D} is known to be infrequent:
so necessarilyf B, C, D} is also infrequent and needs not to be generated. The supipitie candidates
of size 3 is evaluated, anfl4, B, D} is eliminated as infrequent. The other candidates are émig@and
there are no ways to combine them for a fourth iteration: tigeraghm stops.
Data | .
: Matrix representation
Items ‘

A|B|C|D|E
@ @l1|1|1|1]1]0
o o
LB 2 2110|110
L3 ™ &l3|1]1]|1]0]|0
c c
. @ S4|10(0(1|1|1
= =
5111|011
Execution of Apriori algorithme = 2
Iteration 1 Iteration 2 Iteration 3
Candidates | Support| Candidates Support Candidates Suppo
of size 1 of size 2 of size 3
A 4 e AB 3 . ABC 3
B 3 AC 4 ABD 1
C 5 AD 2 ACD 2
D 3 BC 3
E——1 BH————1
CD 3

Fig. 5. An example of Apriori execution.

Among the many improvements to this algorithm, Pasqeieal. [15] were the first to design an
algorithm for discovering only thelosedfrequent itemsets, and showed performances improvements
around one order of magnitude. These results were improyediaki's CHARM algorithm [17]. Today,
the fastest algorithm for discovering closed frequent gets is LCM2 [18], the winner of the FIMI'04
contest.

B. Tree mining

Most tree mining algorithms are adaptations of the Aprioin@ple to tree-structured data. They usually
deal with findingall the frequent subtrees from a collection of trees. One piomgevork is Asaiet al.
Freqgt algorithm [3], discovering all frequent subtreeshwpreservation of the order of the siblings. The
other pioneering work is Zaki'$reeMiner[19], using a more relaxed inclusion definition where theeord
still has to be preserved, but instead of the parent relstipnthe mapping has only to preserve the
ancestor relationship.

Both these algorithms, like the Apriori algorithm descdbeefore, are levelwise generate and test
algorithms, and make use of the anti-monotonicity propérhe size of a candidate tree is expressed as
its number of nodes, so these algorithms first generate altémdidate trees with one node, then from
those of these candidates which are frequent generate tiggdese trees with two nodes, and so on and
so forth. Each candidate’s frequency has to be assessedtimgtés inclusion in all the trees of the data,
which is a very computation-time expensive operation. Aeodifficult part is the candidate enumeration
method. Unlike the case of itemsets, here the extensionsmflifferent candidates of sizecan lead to
the same candidate of sizer 1, as seen in Fig. 6: there are two different candidates of 3jz¢& — B
and A — C'. To create candidates of size 3, one possibility is to j¢ir C to A — B, the other is to join
A— B to A—C. Obviously these two possibilities lead to the same candidasize 3. This introduces
redundancies in the enumeration process, which must beedait all costs as testing the frequency for
one candidate or testing for duplicates inside the caneldsgt are computationally expensive operations.

Candidates of
size 2

join E

Candidates of
size 1

Candidate of
size 3

join

Fig. 6. Three steps of candidate generation, the two catedidz size 2 lead to a single candidate of size 3.

The authors of the two previous papers prevent this by geaimorder on the generation of candidates,
which imposes to add new nodes only on tightmost branchof the frequent tree of sizéused as a
basis. This enumeration strategy avoids duplicates, thablig a better efficiency than naive methods.
It is illustrated on Fig. 7.

L :\)

SeeSon on S

\

. : Node of the rightmost branch

.,, : Extension on this node

Fig. 7. Candidate generation via the rightmost branch enatio@ method.

The second generation of tree mining algorithms has bedgraabto get rid of the order preservation
constraint. This was realized by basing the enumeratioogoiares on canonical forms, one canonical
form representing all trees that are isomorphic except tierdrder of siblings. Such work include the
Unot algorithm by Asaiet al. [20], the work of Nijsseret al. [21], the PathJoin algorithm [22] and the
recent Sleuth algorithm by Zaki [23].

There are still very few algorithms mining closed frequaees. We already mentioned ouR¥ADE
algorithm [11], which relies on a very general tree inclusidefinition and a newhooking principle.
The only algorithm mining closed frequemtducedsubtrees is the CMTreeMiner algorithm of Céi
al. [13]. It uses the same generate and test principle as o#emtining algorithms, extended to handle
closure. This algorithm has shown excellent experimemslilts. Recently, Arimura & Uno proposed the

CLOTT algorithm [12] for mining closed frequent attribute tre@s,the same settings as those of this
paper. This algorithm has a proved output-polynomial tirmmplexity, which should also give excellent
performances. Up to now there is not yet an implementati@aiale.

It is clear that the generate and test method used by all thiggeithms (except BYADE) has an
efficiency which depends heavily on the structure of the paiterns to find. In case of big tree patterns
with high depth and high branching factor, many edge-addiegs are needed to find these tree patterns,
and each step can be computationally expensive because otithber of possible expansions and of the
necessary frequency testing.

IV. THE DRYADEPARENT ALGORITHM
A. Idea of the algorithm

Before going into the details of the HYADEPARENT algorithm, we will first explain the intuition
behind our method. For sake of readability, we will use thentelosed frequent tre¢o designate the
closed frequent attribute trees that theMADEPARENT algorithms discovers.

Briefly stated, the principle of our algorithm is to discoymarts of the frequent trees, and then to
assemble these parts together to get the frequent treegaftgethat we are interested in are the closed
frequent tree®f depth 1 The interesting characteristic of these closed frequesistof depth 1 w.r.t. the
final result is that:

. either they are closed frequent trees as is ;

« or they represent one node and its children in one or moredléequent trees (a formal proof will
come later in Lemma 1). Consider for example Fig. 8: the ddsequent trees of depth 1 and of
roots A, B and C assembled together make a single tree of depthwhich is the closed frequent
tree to find.

[e]

Fig. 8. A closed frequent tree and its tiles.

It is quite simple to find these closed frequent trees of déptly using a standard closed frequent itemset

algorithm: for any label € L, create a matrix whose transactions are the nodes of labielshe trees

of the data, and whose items are the labels of the childrehedet nodes. The resulting closed frequent

itemsets will be sets of edg€$z, v1), ..., (z,y,)} rooted on the same node, i.e. closed frequent trees of
depth 1. By iterating on all the labels all the closed frequent trees of depth 1 can be found by this
method. An example of discovery of closed frequent treesepftid 1 is shown on Fig. 9.

That is why for now on we will call the closed frequent treesdepth 1 with the shorter name tlfes,

as like in mosaics or in puzzles, they are the small parts dhatassembled together to make a closed

frequent tree of’.

Label A

Children of these nodes Closed frequent itemset Closed frequent trees of depth 1
e=2
Datatree 5 B|C|P
RN éé 1| 1| 1| 0| —— {B,C}
= DB o)
Label B
— 2]
2| 1|0 — {G}
70011
Label C
"
4|1 — {H}
10| 1

Labels D, G, H, K: not frequent

Fig. 9. Example of discovery of closed frequent trees of lalelpt

Remark: Another advantage of the tiles is that they follow the dymamiogramming as defined in
[24], in the sense that they are solutions to subproblem&i®@fmain problem, that are computed only
once and can then be reused any number of times. This allawsefter performances, especially in the
cases where the closed frequent trees share many comman tile

The most obvious hint to determine how to combine the tilggetioer is to look at their labels. If a
leaf label of a tileTi; matches with the root label of a til&i,, then it is possible for these two tiles
to be “hooked” together and create a bigger tree. This is shanFig. 10. However nothing guarantees

Fig. 10. A simple hooking between two tiles, and the resgltiree.

that in the mappings of'z; andT'i, in the data, the leaf of'i; and the root ofli, are the same node.
If this is not the case in at leasttrees of the data, then the tree constructed by combihingand 7',
will not be frequent, and so cannot be part of the final regtdt. example consider Fig. 11. The tiles are
the same tile§7; andT', that in Fig. 10, so from the labels they can hook. By analyzivegmappings,
we can see that ifi}, the nodes forB in T4, andT'i, are the same (node 3), so this mapping supports
the hooking of7i; on T'7;. However, inT;, the nodes forB are different: node 9 fof'i;, and node 11
for T'i,. So the mapping fronT;, does not support the hooking. The hooking being supportechiy one
tree, and the frequency threshold being 2, the hooking is not frequent, so must not be done.
Ensuring that the mappings of the data support the tiles cwatibns is a necessary step. But this is
not sufficient. There can be many til€s,,....Ti,, whose root node label matches a leaf node label of
T'i1, such matching being supported by mappings in the data. frfarsy new trees can be constructed:
combiningT’i; with T',, or Ti; with T'i3, or evenli; with Ti, andT's... This is illustrated on the example
of Fig. 12, where 3 tile{T",, T3, Ti4} can hook onl";.

Tiles Mappings

Datatree

Ti, in Ty
a
A
Ty E # Can not hook
o

Fig. 11. A case where the hooking of tiles is not backed up leyniappings.

All the possible hooking combinations

Tiles that can hook off"i;

Fig. 12. Multiple hooking possibilities on a til€%:, and the resulting trees.

However, few of these combinations correspond to what camalyg be found in a closed frequent
attribute tree of the result. In fact, the til&s,, ..., 7%, combined with7i; do not only need to verify a
frequency criteria, but also need to verifyckosurecriteria. This means that we will hook éf only the
closed frequent sets of tiles ¢75, ..., 7,,} whose combination witfi}; to make a new tree is supported by
the data. We will show later that this corresponds exacthyhat is found in the closed frequent attribute
trees. We call the operation consisting in finding the cloBeduent sets of tiles hooking on other tiles
and creating new trees from themhaoking This is the basis of our algorithm. Such operations allow
for a simple level-by-level, breadth-first strategy:

1) Find the tiles that represent the top level of the closeduent trees, they will be calledot tiles

2) For each of these tiles, iteratively perform hookings towgthem by one level at each iteration.

B. Algorithm details

Until now, we have given an intuitive overview of our meth¥de now give thorough explanations over
the concepts of tiles and hookings, as well as the detailedduscode of our algorithm. As a running
example, we use the datatree of Fig. 13 with a support thie@sifc: = 2. The closed frequent attribute
trees to find (i.e. the elements 6j are also represented on this figure s P, P; and P,, along with
their occurrences in the datatree.

The whole algorithm is summed up in Algorithm 1. Note that ig@dtithms 1 and 2¢losed_frequent_itemset_alg
is a general algorithm mining closed frequent itemsetsait be any closed frequent itemset miner. We

Q@&atre e

2] [e]

Loce = {1,11,22,27}

Loce = {7,19,35}

Loce = {1,11}

Fig. 13. Datatree example (node identifiers are subscript®de labels), and closed frequent treesdee 2

assume that this closed frequent itemset miner is sound @mglete. In our implementation we use the
algorithm LCM2 [18].

1) Computation of the tilesThe definition of a tile is as follows.
Definition 2 (Tile): A tile is a frequent attribute tree made from a node of a cldseguent tree o
and all its children. The set of all tiles for the closed fregutrees ofC is noted7Z(C).

Tiy Ty Ty

&) o]
Locc: {1,11,22,27} {2,13} {4,16}
Ty T Tig Tiz
8]
(']
Locc: {7,19,35} {8,20,36} {23,28} {25,31} Closed frequent tre®,
(a) Tiles of our example (b) Hookings at iteration 1

Fig. 14. Tiles and hookings

We have seen before that we can use a closed frequent itenmsegralgorithm to compute these tiles.
We will now detail how, and prove that this method actuallynguite the tiles of7 Z(C).

For a given label let us consider the subproblem of finding all the tiles of tlused frequent trees of
C whose root is labeled by We note the set of these til§sZ(C),. Because these tiles come from closed
frequent trees of, they are frequent in the datatrég.,. We can also infer that the set of til@sZ(C),
is closed, if it was not the case it would contradict the ctesef C (see the proof of the following lemma
for more details). As all these tiles share the same root,laie have to find the sets of children labels
and the occurrences.

This problem can be reformulated as a propositional closeguent itemset discovery problem (as in
Section IlI-A) as follows. Consider a transaction mathi% whose transactions are the nodes/gf, of
labell, and whose items are the labels of the children of these nedesemind the reader that as defined
in Section IlI-A, in a transaction matrix the transactioms the rows and the items are the columns). A
1" in the cell in the row corresponding to the nod€of labell) and in the column corresponding to the

Algorithm 1 The DRYADEPARENT algorithm
Input: A datatreeDrp and an absolute frequency thresheld
Output: The setCp,,qq Of all the closed frequent trees Ny with frequency> e

1: TZ(C) «+ Computation of all the tiles

2. RPy « initial root tiles of Drp

310) CDryade — @

4: HookingBase « ()

5. while RP; # () do
RPiy1 0
for all RT € RP; do

if no hooking is possible o7’ then
CDryade — CDryade URT
else
RPiy1 < RPiy1 UHookings(RT, HookingBase)

end if
end for
RPiy1 < RPip1 U Detect NewRootTiles(TZ(C), HookingBase)
15: 1+ 1+1
16: end while
17: Return CDryade

R o =
AWM RO

label z indicates that the node of labell has a child of labek. For example, in the datatree of Fig. 13,
Mg is:

OccurenceofB | D E G K
2 1 1 0 0
13 1 1 0 0
23 0 0 1 0
28 0 0 1 1

The closed frequent itemsets for matdi% are notedC F1S(M;). All these closed frequent itemsets
satisfy the occurrence-frequency constraint defined befdince we are interested in document-frequent
results, we suppress froddF'1S(M,) all the itemsets whose occurrences appear in less:tlaamcuments,
to get the seC F'1.Sy,.(M;). From each itemsef of CF'15,,.(M,;) a tile of root! is built, whose children
are the items off and whose occurrences are the transactions suppgftimge set of such tiles is noted
TI(CFISz.(M)).

Lemma 1: For any labell € L, we have:

TZ(C), = TZ(CFIS4.(M))
Proof: (7Z(C), C TZ(CF1S4.(M,))) Consider a tileI' € TZ(C),. Let H denote the set of the

labels of the leaves of’, and O the set of the occurrences @f. We have to show that/ appears
in CF1S4.(M;). By definition, the tile is frequent, so has at leasbccurrences inDrp. All these
occurrences appear ii;, so H is frequent by document frequency, with suppOrtHence to show that
H appears inCF1S,.(M;), we only have to show thakl is closed (intuitively, 7/ is closed if it is
maximal for its set of occurrences. We refer the interes¢éadier to [15] for a formal definition of closed
itemsets). Seeking a contradiction, suppose thas not closed, then there would be, for the occurrences
of O, an itemsetd’ such thatd C H'. From H' we can build a tilé[” that has the same occurrences as
T, but more leaves. Considering the closed frequent treefodm which 7" was extracted, it means that
this closed frequent tree can be replaced with a closed érgguee includingl”, so it means thaf was
not closed. This contradicts the hypothesis, so we proveddggation that is closed.

(TZ(C), 2 TI(CFIS4.:(M;))) Considerf a document-frequent closed frequent itemsed6f It has
at leasts different occurrence®), so a tileT" rooted byl and having at least the labels ¢fas children

Algorithm 2 The Hookings function
Input: A closed frequent attribute treé7’, hooking databasél/ookingBase
Output: All the new closed frequent attribute trees found by hookifes on the leaves oAT
1: Result — ()
2. M +— matrix whose transactions are the occurrenced’Bf and whose columns are the tiles that can
be hooked omAT.

3: FIS « closed_frequent_itemset_algorithm(M)

4: for all (f,0) e FIS do

5. if AHK € HookingBase st (AT, f,0) C HK then

6: Result «— ResultU new attribute tree resulting from the hooking of the tilesfobn AT

7: Add (AT, f,0) to HookingBase

8: if A{HK,,..., HK,} € HookingBase st¥i € [1,z] HK; C (AT, f,0O) then

o: Suppress{ HK3, ..., HK,} from HookingBase, as well as the corresponding attribute trees
in RP; or CDryade

10: end if

11: end if

12: end for

13: Return Result

Algorithm 3 The Detect New RootT'iles function

Input: Set of tiles7Z(C), hooking databasé{ookingBase where HookingBase; are the hookings
performed in iteratiory
Output: Tiles of 7Z(C) that have become root
1: Result « ()
:forall TeTZ(C)stT € HT where(x, HT, x) € HookingBase; do
if [Vo € Loce(T, Drp) PT' stT can hook onl” and (77,{...,T,...},*) € HookingBase)] AND
[Jo € Loce(T, Drp) st T cannot hook on any other tile faj then
Result <+ Result UT
end if
end for
- Return Result

w N

N o a A

exists in a closed frequent tree @f the occurrences df' include those of. If in the closed frequent
tree ofC the root of the considered subtree had one more childrenithgnthen this would be reflected
in M;, and f would not be closed. Hence the labels of the leave¥ afe exactly the labels ifi. In the
same way, ifI" had more occurrences than those(fthen these occurrences would appeaninwith
exactly the items off, which is impossible as the only occurrences for the itenfsate those ofD. m

By iterating on the labels of. with the method previously shown, all the tiles @fZ(C) can be
computed. This is the first operation of our algorithm, scitlone on line 1 of Algorithm 1.

In the example, from the matriX/z, the closed frequent itemsef®, £} and{G} are extracted, with
respective occurrencd®, 13} and{23, 28}. Both these itemsets are document-frequent, the corrdggpn
tiles appear in Fig. 14(a) d5i, andT'g, along with all the other tiles for the datatree of Fig. 13.

2) Hooking the tiles:Having found the tiles, the goal of &YADEPARENT is to compute efficiently all
the closed frequent trees through hookings of these tilesstated before, we have chosen a levelwise
strategy, where each iteration computes the next depthftavihe closed frequent trees being constructed.

Initial Root tiles: To begin with, the tiles that correspond to the depth leven@ 1 of the closed
frequent trees must be found in the set of tiles. Such tilescalledroot tiles for they are the top level
of the closed frequent trees 6f They are the starting point of our algorithm.

As these tiles represent the top level of the closed freqtrees, one naive way to discover them is
to discover the tiles who cannot be hooked on any other tide,which are never under any other tile
whatever the mappings. This method works partially and daoogler easily a subset of the root tiles,
that we callinitial root tiles. This is done in line 2 of Algorithm 1. In our example; is the only initial
root tile because its occurrences 1, 11, 22 and 27 are na¢deafvany other tile.

Notations:In the following, we will denote byRP; the frequent trees that are the starting points for
the algorithmi-th iteration RP, being the initial root tiles), and b¢z», the closed frequent trees that
will be obtained by successive hookings on the frequenstod@® P; at the end of the algorithn@izp, is
for illustration purposes, and is not actually construdtgdhe algorithm. In the exampl&® P, = {7}
andCrp, = {P1, P, P3} of Fig. 13.

Hooking: The initial root tiles are the entry point to the main iteoatiof DRYADEPARENT. In iteration
i, for each element’ of R'P; the algorithm will discover all the possible ways to add oegtt level to
T w.r.t. the closed frequent trees to get. This is done viahibaking operation:

Definition 3 (Hooking): For an integet, let’7 be an element oRP;, andC' € Crp, such thatdq < i
st T = (), (I' is the truncation ofC' at depthg). The hooking operation consists in constructing a
new frequent tred” by hooking a set ohooking tiles{T%,...,T%;} on the leaves of" such that the
occurrenceg oy, ...,0,} Of 7" include those ol’, andT" = C/44;.

Such a hooking will be denoted W K (T',7") = (T, {T", ..., Tix }, {01, ..., 0 }).

The subtle point is to find all the frequent hooking tile sais &n element” of RP;. The potential
hooking tiles on7" are all tiles whose root is mapped to a leaf nod&’ofin our example, the potential
hooking tiles onT'; are {Ti,, T4, Tis, Ti7}. Among all these potential hooking tiles, we want to find
those which frequently appear together according to theroexces ofl'. This is a propositional closed
frequent itemset discovery problem, and we can solve it leatarg a matrix)/ whose each ling
corresponds to an occurrenog of 7', and each colump corresponds to a potential hooking til&;.
M][i, j] = 1 iff. for the occurrencep, of T', a leaf of 7" is mapped to the same node as the roof of
Applying a closed frequent itemset discovery algorithmidrenables discovering efficiently all the closed
frequent hooking tile sets. This is done in line 2 and 3 of Aldpon 2. The frequent trees discovered
must be inserted int&® P, ; for further expansion in the next iteration.

In our example, the matrid/ for 1%, is:

Occurence ofl'iy | Tia Tis Tis Tir

1 1 1 0 0
11 1 1 0 0
22 0 0 1 1
27 0 0 1 1

We deduce that the frequent hooking tile sets7on are {7y, T4} and{T'g, Ti7}. These hookings
are illustrated in Fig. 14(b). It can be seen that the closedquent tree”, has been discovered.

Closure checkingHowever, in some cases hooking can lead to frequent treg¢satkanot closed.
Consider the example of Fig. 15. Both tilég| and 7', are initial root tiles, buHooking 2on tile 7',
produces a frequent tree that is included in the frequeet preduced byHooking 1on tile 7%/, thus
being unclosed.

Such cases can be detected quickly by analyzing the hookingmdy made in the previous iterations. For
this purpose, the hookings performed so far are stored inadodse denoted b ooking Base. Each hook-

ing is represented by a triplétoot frequent tree, hooking tiles, occurrences) whereroot frequent tree

is the root attribute tree of the hookinfjpoking tiles are the tiles hooking omoot frequent tree for

this hooking, andccurrences are the occurrences obot frequent tree considered in this hooking. As
shown in Algorithm 2 lines 4-12, when a new hooking is promhdée functionH ookings checks that
this new hooking satisfies the closure property w.r.t. thekimgs of the database. Two non-closure cases
can arise: 1) the new hooking is included into an existingkiiagy then the new hooking is discarded (line
5); 2) the new hooking includes an existing hooking, then ekisting hooking and the corresponding
closed frequent tree are erased from the database, and dosad frequent tree is created from the new

Z;i/lcs ={1,7}
2]

Hooking 1 : Hooking 2 :
o o
A A e A —_—
5 o
o o]

Fig. 15. Example of generation of an unclosed frequent tree

hooking, which is registered into the hooking database=¢li&-9).

Preparing next iteration: In the first iteration, the seeds of the closed frequent tteds discovered
are the initial root tiles, grouped intRP,. The frequent trees grown by hooking tiles on these rods tile
are inserted intdRxPy, and will be used as seed for the next iteration (line 10 ofoAtgm 1). But this
is not enough to discover all the closed frequent treeS.dlMe have seen before that only a fraction of
all the root tiles could be discovered at the beginning of algorithm, these were the initial root tiles.
The problem is that a til§" can as well be the root tile of a closed frequent tf&eand a non-root tile
of another closed frequent trg€. So for the mappings of' corresponding ta”’, 7' will be hooked on
other tiles, preventing it from satisfying the same comais as the initial root tiles. In the examplgi,
is as well a subtree i, and the root tile ofP,. The problem is that if we look at the mappings of
T4, this tile does not hook on any other tile only for the mappingted at occurrence 35: its “root”
status does not appear frequent with so few information.o8@lf these root tiles that are not initial root
tiles, their discovery is delayed to later iterations, at anmnt where we will have enough information
to determine if this tile was only the subtree of one or mooset! frequent trees, or if it can also be the
root tile of some other closed frequent trees. So after ooking step, we have to analyze the hooked
tiles to see if they belong to the category of tiles which aliivays be hooked somewhere, or if they can
become root tiles at the next iteration. This is done infhéect New RootT'iles function (Algorithm 3).

In line 2 of Algorithm 3, the tilesl” which have been hooked on other tiles in the current itemafemd
SO appear iHookingBase;) are iterated over. In line 3, these tilésare tested: the left part of the AND
checks that there does not exist any unknown hooking bettesse tiles and a given til€’, this for all
the occurrences df'. If this left part is true, then we are assured to know evengtfabout the hookings
of T. Here comes the “root” part verification: in the right parttbE AND, we check that there exists
at least one occurrence @f whereT does not hook on any other tile. If this part is also true, tiien
can not only be a subtree of other closed frequent trees, aaast tile. This is recorded in line 4. In
our example T, is one of these candidates to be root tile, it has been hookétpfor occcurrences
7 and 19. There are no other tiles where it can hook (left path@ AND of line 3 satisfied), and for
occurrence 35 it does not hook on any other tile (right parthef AND also satisfied). S@:, becomes
a new root tile, this will allow the discovery of closed fresqu treePi, in the next iteration.

C. Soundness and completeness

Theorem 1: The algorithm DRYADEPARENT is sound and complete, i.€p, 44 = C.
Proof:
Completeness:

Let P € C be a closed frequent tree. We want to prove tRais found by DRYADEPARENT. Let us
prove by induction on the depth levels &fthat for every depth leved, P, is found at some iteration
of DRYADEPARENT.

For depth level 17, is by definition a closed frequent tree of depth 1, i.e. a #le.it is found in the
first step of DRYADEPARENT.

For depth leveld let us suppose that the induction property is true, i.e. thate exists an iteration
of DRYADEPARENT where P, is found as an element P, ;. Let us show that?,,; is found in a
later iteration of ORYADEPARENT.

By definition of the tiles all the tiles corresponding to theedt subtrees of’, in P have been found in
the first step of RYADEPARENT, so all these tiles appear as columns\éfin the Hookings procedure.
Let S denote this set of tiles. Becaustoccurs in at least documentsP has at least occurrences, so
the closed frequent itemset algorithm in tHeokings finds a set of tilesf where at leasf © S. Let us
show that we cannot havé D S. Suppose thaf has one more tilg" than.S, for the same occurrences.
This means thal’ can also be hooked oR; with the other tiles ofS, with occurrences that include the
occurrences of’. So for all the mappings aP, new P + 7" mappings can be found. This contradicts the
fact that P is closed. Hencg = S.

We must now show that the test on line 5 of tHeokings function (algorithm 2) is evaluated toue,
i.e. that there are no hookings in the hooking base that desluhe hooking of the tiles of on P, (else
no frequent trees would be built from the hookingsf)f In the same way as we did previously, it is
easy to show by negation that if there was such a hooking, thamuld not be closed.

Hence the closed frequent trég; ;, resulting from the hookings of the tiles gfon P, is correctly
constructed.

It is inserted intoR P, 2, hence the induction property holds.

So DRYADEPARENT is complete.

Soundness:

Let P be a frequent tree outputted byRRADEPARENT. We want to show that we have € C, i.e. P
is frequent andP is closed w.r.t. the set of all frequent trees.

Frequency: Suppose by negation tlfats not frequent. It means that either a tile Bfis not frequent
or that there exists a depth level Bfwhere the set of tiles for this depth is not frequent. In babes, it
means that the closed frequent itemset algorithm gave dreqaent result. It contradicts the soundness
of closed_frequent_itemset_algorithm. HenceP is frequent.

Closedness: Suppose by negation tRats not closed, i.e. there exists a closed frequent féen
which P is included for all its occurrences. We consider all the gmesnclusion cases, as shown in Fig.
16:

Fig. 16. Three possible inclusion cases

a) One more sibling node: this case would mean that the gmnelng tile was not closed, hence that
the closed frequent itemset gave a non-closed result. Qgaia,at contradicts the soundness of the
closed frequent itemset mining algorithm.

b) One more leaf child node: this case would mean that a titking has not been discovered or not
been done. Because all the tiles are correctly found thamksmima 1, and that the filling of the
hooking discovery matrix is trivial, it would mean that athithe closed frequent itemset algorithm
was not complete, which contradicts the completenesswmtd_frequent_itemset_algorithm, or
that the hooking was found but later dismissed. Such a dssthe®uld only be done by the closure
checking mechanism, and only if there is a bigger hookingtliger same occurrences at the same
place. This would mean thd?’ itself is unclosed, which contradicts the hypothesis.

c) One more root parent node: LEtbe the root tile ofP as found by IRYADEPARENT. In this case,
the root tile of P’ (containingP) is a tile T’ # T, andT hooks on7”. Suppose that there is such
a tile 7”. By definition it cannot be an initial root tile (or &yADEPARENT would have found it),
and neither can b& (because it hooks ofi’). Because it was never considered as a root tile,
the hookings ofl" on 7" have not been found and do not appear in the hooking dataBasthe
condition on line 3 ofDetect New RootT'iles can not be satisfied for all the occurrences/ofand
so T cannot be detected as a root tile.

By definition of the root tile detection procedure, this cas@not occur.

HenceP is closed, and we can conclude that the algorithrRYADEPARENT is sound. [|

D. Complexity
We estimate the time complexity of theRRADEPARENT algorithm according to the following param-

eters:

« ||Drpll the number of nodes of the input database

« |C| the number of closed frequent trees to find

. d the average depth of a closed frequent tre€ of

« |7Z(C)| the total number of tiles in the closed frequent tree€ of

Computation of tiles: The tiles are computed with the LCM2 algorithm [18], whosedicomplexity is
linear with the number of closed frequent itemsets to findttgotime complexity of the tile computation
step is linear with the number of tiles:

Complexity(Tile_computation) ~ O(|TZ(C)|)

Computing the initial root tiles: To determine which tile is an initial root tiles, all the ocrences
of all the tiles are checked. This simple step hence has adonelexity of:

Complexity(Initial_root_tiles) ~ O(||Drp||.|7Z(C)|)

Main iteration The first step of the main iteration is a loop repeated as mangst as there are
elements iMRP;. These elements are truncations of closed frequent tre@ssaf we havaRP;| = «.|C|,

whereqa is a constant.

. “if” of line 7: Determining if there are hookings on an elem&f € RP; comes to check all of
its occurrences, the time complexity is:

Complexity(Check_if_hookings) ~ O(||Drp||)

o Hookings procedure: Building the transaction matrix and running the LCM2 al¢fam has a time
complexity of O(||Drp||.|7Z(C)|). The hooking base must then be checked, the time complexity
of this search operation is linear with the number of hookiryn upper bound for the number of
hookings is the number of tiles. Hence:

Complexity(Hookings) ~ O(||Drp||.|7Z(C)| + |TZ(C)|)
~ O(| Drp||-|TZ(C)|)

The overall time complexity of the for loop is then:

Complexity(for_loop) ~ O(|C| x (||Drpl|l + [|Drpl||-|TZ(C)|))
~ O(|C|.|| Drpll.|TZ(C)])

Then we have to compute the complexity of thetect New RootT'iles procedure. For each tile there
is a search in the hooking base on line 2, and then on line 3ralsea all the occurrences of the tile
which needs another search in the hooking base. This givesenall complexity of:

Complezity(Detect New RootTiles) ~ O(|TZ(C)|.|TZ(C)|.||Drp||-|TZ(C)])
~ O(||Drp|-|TZ(C)%)

The main iteration is repeatetld times (with 3 a constant), so its time complexity is:

Complexity(Iterations) ~ d.(Complexity(for_loop) + Complexity(Detect New RootTiles))
~ O(d.(IC|-| Dro|||ITZ(C)| + || Dro I TZ(C)[))
~ O(d.| Drp||.|TZ(C)|.(TZ(C)* + C]))

The overall time complexity of the whole &YADEPARENT algorithm is then:

Complezity(DryadeParent) ~ Complexity(Tile_computation)
+ Complexity(Initial_root_tiles)
+ Complexity(Iterations)
~ O(ITZ(C)[+ | Droll I TZ(C)]
+d.| Drp|l|ITZ(C).(ITZ(C)I* + [C]))
~ O(|TZ(C)|-(1 + || Drpll + d.| Dro|l.(ITZ(C)* + IC1)))
~ O(|TZ(C)|.d.|| Droll. (1 TZ(C)|* + C]))

We have given our complexity formula in terms of the numbetiles |7Z(C)|. This number of tiles
can be approximated by the number of internal nodes in theedldrequent trees. With this we can
reformulate the complexity in terms ¢€| the number of nodes in the closed frequent trees tatite
average branching factor of the closed frequent trees akt /N (C) be the internal nodes of the closed
frequent trees of. We have:

B number of edges i@
~ number of internal nodes i@
The number of edges in a single tréewith N nodes isN — 1, we deduce that for the set of treés

,_llel e
[IN@)]
So:
vy = 1
Hence:
77(0)] ~ ey = -1

The complexity formula can now be written as:

el - ic] () — ley?
;)
From the above formulas we can conclude that the complekiBRYADEPARENT is polynomial in the
number of tiles, polynomial on the number of nodes in the edo§equent trees, inversely proportional
to the square of the average branching factor, linear wighsthe of the data and linear with the average
depth of the closed frequent trees. Such characteristiosldfallow good scale-up properties, this will
be investigated in the next section.

Complexity(DryadeParent) ~ O(Ad.||Drpl|-(

V. EXPERIMENTS

This section reports on the experimental validation a(fyYBDEPARENT on artificial and real-world
datasets, as well as an application example on real XML ddta. DRYADEPARENT algorithm will be
compared with the state-of-the-art closed tree mining rilym, CMTreeMiner [13], using the original
C++ implementation of its authors. All runtimes are meaduna 2.8 GHz Intel Xeon processor with
2GB memory (Rocks 3.3.0 Linux). RYADEPARENT is written in C++, involving the closed frequent
itemset algorithm LCM2 [18], kindly provided by Takeaki UnReported results are wall-clock runtimes,
including data loading and preprocessing.

A. Artificial datasets

In the usual tree mining algorithms studies, at most thetlefige. the number of nodes) of the found
closed frequent trees is reported, without any informaabtout the structure of these closed frequent
trees. However, branching factor and depth of the closegli&et trees intervene directly in the candidate
generation process, so they are likely to play a major rotd.wthe computation time. To ascertain this
hypothesis, we wrote a random tree generator that can dgertegas with a given node numbarand a
given average branching factbrNodes are labeled with their pre-order identifier, so tlageeno couples
of nodes with the same label in a tree. We generated trees With 100 nodes and € [1.0;5.0], b
increasing by increment of 0.1. For each valuehp0,000 trees were generated. Zébe such a tree.
For eachl” a dataseiD; was generated, consisting simply of 200 identical copie® ¢ive perform this
200-times duplication of eacl to increase the processing time fb¥ and so reduce the error rate on
time measurement). Eadb; was processed by both algorithms, with a support threshioR00 (hence
the closed frequent tree to find is the trfEg and the processing time was recorded. Eventually, fon eac
value of b we regrouped the trees by their depthand got a pointb, d) by averaging the processing
times for all the trees of average branching fa¢tand depthd. Fig. 17(a) shows the logarithms of these
averaged time values w.r.t. the average branching factand Fig. 17(b) shows the logarithms of these
averaged time values w.r.t. the depth

The Fig. 17(a) shows thatRYADEPARENT is orders of magnitude faster than CMTreeMiner as long as
the branching factor exceeds 1.3, that is the case in mos$teotperiments space. For lower branching
factor values, CMTreeMiner has a small advantage. Closgfuént trees with such a low branching factor
necessarily have a high depth, this is confirmed by Fig. 17{bis figure shows that RBYADEPARENT
exhibits a linear dependency on the depth of the closed émtcjuees. This is not surprising: each iteration
of DRYADEPARENT computes one more depth level of the closed frequent treesery deep closed
frequent trees will need more iterations.

CMTreeMiner, on the other hand, shows a dependency on thhages&éranching factor, but for a given
value of b the computation time varies greatly, being especially Hghlow depth values. Because of
the constraints on the random tree generator, a tree thaa l@s depth with a high average branching
factor will necessarily have some nodes with a very largedhrang factor. We plotted in Fig. 18 a new
curve, showing the computation time with respect to riineximalbranching factor.

DRYADEPARENT is nearly unaffected by the maximal branching factor, bet ¢domputation time of
CMTreeMiner depends strongly on this parameter. In ordeurtderstand how much the behavior of

100 nodes trees

100 nodes trees
T T

4 T T T T T
DryadeParent
CMTreeMiner ¥4

T
DryadeParent ZZ7]
CMTreeMiner &%

50

&
0%
)
25
K&

2
3
5
o3eses
X%
062!
os
238
os
s
=
09528
=S
2
s
2
<X

25

<K

=

%3S

oos

%

ooess

X
ORI
IR

e

3

<K

$9568

Satetates

Seseneteded
2eeeeites
XX
XS
pielels

335
Jetoletste:

jolel

<
95995

%

5

os

oS

oo

s

RS tratetotetate,
Josresetetisotototatel
Jossiesiss

2

S5l

<X

ool

<%

<%

oo

%%

X XXX
[F00e
%9

fojsieseres

Log(time)
Log(time)

1 15 2 25 3 35 4 45 0 10 20 30 40 50 60 70 80 90
Average branching factor Depth
(a) Log(time)/average branching factor (b) Log(time)ithep

Fig. 17. Random trees with 100 nodes

100 nodes trees

DryadeParent ZZ7]
CMTreeMiner 3533

Log(time)

L L L
0 10 20 30 40 50 60 70
Maximal branching factor

Fig. 18. Random trees with 100 nodes, log(time) w.r.t. makibranching factor

CMTreeMiner and RYADEPARENT differ, we analyze below the reasons of the dependency tachiag
factor of CMTreeMiner, and of the variability of its perfoamces in general.

We give a brief reminder of the candidate enumeration teglenof CMTreeMiner, the rightmost branch
expansion. To generate candidates witimodes from a frequent tree with— 1 nodes, CMTreeMiner
tries to add a new edge connecting to a node of known frequdd land starting at a node of the
rightmost branch of thé& — 1 node tree. All the nodes of the rightmost branch are explstextessively
in a top-down fashion, from the root to the rightmost leaf.

1. Branching factor leads CMTreeMiner to generate more unabsed candidates by backtracking
For a node with high branching factor, finding correctly the of its frequent children is a classical
frequent itemset mining problem, and the highly combinatonature of this problem often leads to
the generation of useless candidates. CMTreeMiner is nepxmn to this rule: its top-down rightmost
branch expansion technique finds very quickly all the ckitdof a node, but then needs to systematically
backtrack to check for frequent subsets of these childremmadst cases, this leads to the generation of
non-closed candidates. For example, compare the two closgdent trees of Fig. 19. The linear trég
is found without generating any unclosed candidates. Baiffltt treeP; is found after the generation of
3 unclosed candidates, so according to our experimentgnidi needs 7% more time than finding
in this simple setting with 4 nodes, and 100% more time in alamsetting with 11 nodes.

DRYADEPARENT also has to confront such a combinatorial problem in higim¢nang factor cases, but
it does so by using the LCM2 closed frequent itemset miniggprathm, which provides as of now the
most efficient way to explore the search space of closed émdgtemsets. Furthermore, by discovering the
tiles once and for all at the beginning of the algorithmRYADEPARENT avoids to repeat these complex
computations if the same tile appears more than once in teedlfrequent trees.

P Candidates

—»—»
[e] [e]

P, Candidates

Co C Cy C.
(o= (] (2] —
n \
" \
FlIBE W R NEE B
\

Cs C

\[a
N — Forward enumeration step
E - = —> Backward enumeration ste|

Fig. 19. CMTreeMiner candidate enumeration for a lineae &ed for a flat tree

On this problem, CMTreeMiner could probably be improved bgdifying its enumeration technique
in order to use LCM2 for sibling enumeration. Such a modifigpbathm should be similar to the recent
CLoTT algorithm by Arimura and Uno, which is an extension of the LZMrinciples to the closed
attribute tree case.

2. Candidate generation asymmetryThe previous problem explains partly why CMTreeMiner is
slower than IRYADEPARENT in most cases. As we have seen, this problem can theorgtimtbvercome.
However, another problem remains, that cannot be overcasidyeand this problem is essential to the
superior performances of our hooking strategy over anyrdhgn based on rightmost branch expansion.

Consider the simple closed frequent tree of Fig. 20. As it lbarseen, during candidate enumeration,

Candidates

Closed frequent tree C

— Forward enumeration step

- — —>» Backward enumeration step

Fig. 20. CMTreeMiner enumeration for a left-balanced atbfequent tree

unwanted candidates are generated, because the righeabsixpbansion technique has to test “blindly”
all the potential expansions on the rightmost branch, but @aly grow good candidates for certain
expansions. For example, the candid&tecontains correct information: it corresponds to the firsele
of the closed frequent tree to find. But as some expansions lbeusiade on the node labelét] which

is not on the rightmost branch 6f,, thenC is eliminated. In the same wag;, is computed for nothing.

The children with label” of the root node will have to be recomputed in candidage even if it could
have been discovered much earlier.

This behavior is not only sub-optimal, it also undermines tbbustness of CMTreeMiner. Consider
the two closed frequent trees of figure 21. Except for the saphéabels, both these closed frequent trees

Fig. 21. L: left-balanced closed frequent treR; right-balanced closed frequent tree

exhibit the same tree structure, so it is expected that theyiscovered in exactly the same amount of
time. However, assuming that the sibling processing ordahe ascending order of labels (this is the
case in the actual implementation of CMTreeMiner), closedjdent treeR?, which is right-balanced, is
an ideal case for enumeration by rightmost tree expansitilr€Miner will check 43 candidates to
discover it. On the opposite, the left-balanced closeduieed treel is a worst case, and CMTreeMiner
will require to check 79 candidates for its discovery. Thenpatation times reflect this difference in
candidates checking: time for finding is 50 % higher than time for finding, as shown in Tab. I.

Closed Frequent Tre¢ R L
CMTreeMiner 0.0010 s| 0.0015 s
DRYADEPARENT 0.0013 s| 0.0013 s

TABLE |
COMPUTATION TIME FOR FINDING CLOSED FREQUENT TREE® AND L

On the other hand, thanks to its tree-orientation neutrakimg technique, BYADEPARENT requires
exactly the same amount of time for processing these tweoedldeequent trees. For both and R,
DRYADEPARENT will generate 3 candidates: 1) the initial tile with rodt 2) a candidate generated by
hooking of a tile on respectively or F, 3) the closed frequent trek or R by hooking of another tile
on respectivelyF or I.

Last, we compared the scalability ofRRADEPARENT and CMTreeMiner both on time and space in
Fig. 22. The dataset consists of 1,000 to 10,000 copies ofiquemperfect binary tree of depth 5. We

Binary trees, depth 5 Binary trees, depth 5

16 450

' ' DryadéParent — DryadéParent —
14l CMTreeMiner =~~~ i 400 | CMTreeMiner =~ |
ol 350 |
300
10} @
O 250}
o 8 2 R
£ 2200 |
= [}
=150})
100 |
50} -
9000 2600 3000 4000 5000 6000 7000 8000 9000 10000 9000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of instances Number of instances

Fig. 22. Scalability tests, binary trees (time - memory)

can see that both on time and spac®&YBDEPARENT scales linearly. The memory usage is higher for

DRYADEPARENT, but here the reason is mostly implementation specific: kangle DRYADEPARENT
integer type is “integer” whereas CMTreeMiner’s one is ‘khowhich is 4 times smaller on our 64 bit
machine. And [RYADEPARENT internal representation for trees is based on trees of gr@intvhich uses
the most memory, especially on a machine where the pointer8 aytes long.

Complexity issues:Here we evaluate the validity of our complexity analysis @ctn IV when
compared to the actual results, for the artificial dataset.

Fig. 23 compares the logarithm of the processing time forréaé algorithm with the logarithm of the
complexity formula of Section 1V), w.r.t. (a) number of slend (b) average branching factor (the linear
behavior of the algoritm w.r.t. depth has already been &moed in Fig. 17 (b)). For a given number of
tiles (Fig. 23 (a)) or average branching factor (Fig. 23,()kre are several trees with different shapes
satisfying this constraint, leading to different procagsiimes or estimates. The shaded area of the figures
represents all these processing times (for the real afgoyior estimates (for the complexity estimate).

Program results Complexity estimate
‘ ‘ Iog(Probram tim‘e)ZZZI '

29

' Iog(éomplexify estima‘tem& .
28 q

271
26
251
24
231
22

log(time)
log

21
20

| | | | | | | 19
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 1
Number of tiles Number of tiles

(a) Log(time)/number of tiles
Program results Complexity estimate

29
I‘og(Progr‘am resul‘ts?m

' Iog(éomplexit‘y estima‘te)&m
28 7

27 %,
26
251

log

24

log(time)

23
22

21
20

| | | | | | | 19 | | | | |
15 2 25 3 35 4 45 5 1 15 2 25 3 35
average branching factor average branching factor

(b) Log(time)/average branching factor

Fig. 23. Comparing real processing time and estimated caxiipl

On Fig. 23 (a), the estimated curve and the real times matdifavenore than 50 tiles, but for a lesser
number of tiles, the real times curve presents a gentlerestban the complexity estimate. For a high
number of tiles, [RYADEPARENT spends most of its time on hooking tiles, with a lot of itevas. The
startup time needed for loading the data and creating atlegeéata structures is negligible compared to
the total time in these cases. But for lower numbers of tileare are fewer iterations ancRRADEPARENT
is very fast at completing them. So the startup time is no éongegligible compared to the total times
in such cases. Such startup processings are not taken icbvorgdn the complexity formula, hence the
difference occurs between the two curves.

The same behavior can be observed in Fig. 23 (b), for highcbiag factor cases the real algorithm
performs fewer hookings and hence is limited by startup timieich is not reflected in the complexity
estimate.

One can also note a visible discontinuity on the curves ferabmplexity estimate. This discontinuity
reflects the behavior of our artificial data generator. Ferage branching factors above 1.9, the generator
is allowed to produce nodes with very high branching factdiereas it is not possible below it. This
allows an efficient generation of artificial trees satisfythe given constraints, at the price of smoothness.

The curves for [RYADEPARENT also present this discontinuity, although it is less visibl
As a conclusion, the complexity estimates that we providsghrsto capture well the behavior of the
DRYADEPARENT algorithm, especially when the algorithm has enough hapkwork to do.

B. Real datasets

In the tree mining literature, two real-world datasets aidely used for testing: the NASA dataset
sampled by Chet al. from multicast communications during a shuttle launch &y25], and the CSLOGS
dataset consisting of web logs collected over one monthea€Cth department of Rensselaer Institute [19].

The runtimes obtained for various frequency thresholdsfith DRYADEPARENT and CMTreeMiner
are displayed on Fig. 24.

90 Nasa/Multicast 12 CSLOGS

DryadeParent — ‘ ‘ ‘ ‘ "DryadeParent —
80, CMTreeMiner . CMTreeMiner

%1 02 03 04 05 06 07 08 09 1
Support
Fig. 24. Running time w.r.t. support for the Nasa/Multicastli CSLOGS datasets.

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Support

DRYADEPARENT is more than twice faster than CMTreeMiner on the CSLOGS s#ataFor the
NASA dataset the performances are similar for high and nmedawpport values, BYADEPARENT
having a distinct advantage for the lowest support valuege Nhat we obtained similar results with
simplified CSLOGS and NASA datasets consisting only of laite trees. We were interested to know
why DRYADEPARENT and CMTreeMiner have a bigger performance difference orlCi8eOGS dataset
than on the NASA dataset. Analyzing the structure of the adeyb closed frequent trees in both cases,
we found that in the CSLOGS dataset, for the support valu3(lbwest value tested), there are 924
closed frequent trees, with 3 nodes on average, and an avbragching factor of 1.6. For the NASA
dataset, the picture is different: at the support valuetbdre are 737 closed frequent trees, with 42 nodes
on average, an average depth of 12 and an average branchingda1.2.

Discussion: Our artificial experiments have shown that the structurehef ¢losed frequent trees to
find, especially their branching factor, is a crucial pemfance factor. The closed tree mining algorithm
CMTreeMiner, based on candidate enumeration by rightm@sidn expansion, has performances which
vary considerably with the branching factor of the closesjfrent trees, and even with their balance. The
fact that CMTreeMiner and BYADEPARENT have similar performances on the NASA dataset, with closed
frequent trees having quite low branching factor, and tHdif@eMiner is slower than BYADEPARENT
on the CSLOGS dataset, with closed frequent trees havingtehbranch factor, is consistent with our
experiments on artificial data.

Experiments have shown that the new method for finding clésegient attribute trees of ourAYADE-
PARENT algorithm is not only computation-time efficient but alsdust w.r.t. tree structure, delivering
good performances with most tree structure configurati®ush a robustness is a desirable feature for
most applications, especially the applications which ddtth trees having a great diversity of structure,
for which the typical structure of closed frequent treesncdrbe predicted.

C. XML application example

In this last series of experiments, we show the analysis obraus of real XML data. This corpus
comes from thXMLMining Challengecompiled by Ludovic Denoyer [26]. We used the “Movie” cospu

initially designed for a mapping task. The training part lmstcorpus has the advantage to contain well
formed XML documents with meaningful tags, each documestileing one movie.
Preprocessing:We preprocessed this corpus in the following way:

« For all leaf tags correspondedPLCDATA stringgiving the value associated to this tag (for example
a tag “name” could have as associated PCDATA “John Wayndflth& PCDATA of these tags were
processed to get rid of punctuation signs and convert thartgxlower cases. In case of strings with
spaces, like in “John Wayne”, the spaces were replaced bgraoores, with a prefixing underscore,
like in “_john.wayne” (so that the Perl parser we used could handle numenads like “.1941").
These normalized strings were used as labels of new nodesl addchildren of the labeled nodes
which the original strings where values of.

« We made minor alterations to the structure in order to cdanvex original trees to attribute trees.
For this, tags that represented list items were replaced twéir children, i.e. by their actual content.
For example each actor in a movie was represented by a tagdnang&y” under a main “cast”
tag, and inside this “entry” tag where a “name” and one or nforkes” tags. We suppressed these
intermediary tags and instead created a new tag with thalactume of the actor, which became a
child of the “cast” tag. The roles of this actor became cleitdof the tag bearing the name of the
actor.

. There are two tags, “synopsis” and “review”, whose data ifi@tstext respectively describing the
movie and reviewing it. Each text was cut into words, the wimpls like “the”, “and”, etc. where
suppressed from this list of words, for each word only onet®foccurrences was kept, and all the
remaining words became new tags added as leaves of the ‘sgh@nd “review” tags.

Performances: In the first experiment, we preprocessed 100 documents o89Befrom the collection,
and fed them as input to &Y*ADEPARENT and CMTreeMiner in order to analyze the computation time
performances. The results are given in Fig. 25 (a), with tfegage branching factor of the closed frequent
trees in Fig. 25 (b). There are no results under a supporewai0%, as in this case KYADEPARENT
saturated the memory.

XMLMovie, 100 documents XMLMovie, 100 documents

6.5

DryadeParent—
CMTM - | f
5 6f
b3 Average closed frequent tree
8 branching factor
o 5-5F
c
£
S sp
g
045k
0 | | I B T 4 | | | | |
40 50 60 70 80 90 10(40 50 60 70 80 90 1
Support Support
(a) Computation time (b) Average closed frequent tree briagcfactor

Fig. 25. Comparative results forRYADEPARENT and CMTreeMiner with the XMLMovie dataset

The closed frequent trees have a high branching factor: pescéxd from the previous experiments, for
high support values BYyADEPARENT largely overperforms CMTreeMiner. Surprisingly, for lomsupport
values the contrary happens. To understand why this wasshapp we analyzed carefully the time spent
by DRYADEPARENT in its various tasks. We found that for a support value of 4@%as spending 74%
of its computation time making closure tests (which coroesfs to line 5 of Algorithm 2). The problem
is that as we stated in our introductionRIADEPARENT has been designed with heterogeneous datasets
in mind, that is data from various organizations about thmesdopics. Because of the very nature of
such datasets, they are currently very difficult to find. Thbligly available datasets, like the one we
use here, usually come from the same organization, so ayeheenogeneous. The consequence is that a
lot of closed frequent trees are nearly identical, and sa afithookings also resemble each other, with
subtle differences. Our closure test has been written inheeranaive way: it first looks for exact hooking

matches in the database, and then for bigger (the currekirg e included in a bigger hooking of the
database) and smaller matches (the current hooking ireladenaller hooking of the database), iterating
on all the possible cases of bigger/smaller matches. Ustrad is very fast because there are not so much
cases to examine, but with a very homogeneous dataset as XiMEM became a bottleneck. On the
opposite, the edge adding strategy of CMTreeMiner is moropeant here: the fact that all the closed
frequent trees resemble each other means that it has fewdideses to expand, so what is a bad case
for DRYADEPARENT is a good case for CMTreeMiner.

To evaluate the behavior of both algorithms on more hetereges data, we derived a new dataset
from XMLMovie. The XMLMovie documents are all rooted withegh'movie” tag. We divided our 100
documents into 10 groupf&1, ..., G0}, chose 10 arbitrary tag§, ..., t10}, and in each grouyg;, for
all the documents of this group made the tageplace the tag “movie” at the root of the tree, so that
for all 7 € [1,10] documents inG; are rooted by tag;. The new dataset, called XMLMovieHtr, is much
more heterogeneous: all documents are on the same topichand sommon tags, however the small
difference in the roots avoids homogeneity and gives momgoniance to the closed frequent trees not
using this root.

The performances for the processing of XMLMovieHtr are sham Fig. 26 (a), with the average
branching factor of the closed frequent trees in Fig. 26 (b).

XMLMovieHtr, 100 documents

DryadeParent—
CMTM]

XMLMovieHtr, 100 documents

Average closed frequent tree
branching factor

/

Average branching factor
N
&

Log(time)
NP OFRPNWDNMOUUON®
T T T T T T T T T N

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 AC
Support Support
(a) Logarithm of computation time (b) Average closed fregueee branching factor

Fig. 26. Comparative results forAYADEPARENT and CMTreeMiner with the XMLMovieHtr dataset

This time both algorithms could correctly process the dataafl support value. The computation time
difference was important betweenREADEPARENT and CMTreeMiner, so we had to use a logarithmic
scale for the time in Fig. 26 (a). For all support values, evetosed frequent trees to find were complex
and numerous (more than 20,000 at support = 2%)YADEPARENT could achieve a several order of
magnitude improvement over CMTreeMiner, processing th@a da 45s for a support of 2%, whereas
CMTreeMiner needed 2846s. So as expecteHyADEPARENT is far better adapted for heterogeneous
data than CMTreeMiner.

Closed frequent trees analysisWe now show how the closed frequent trees found could be uiseéun
XML data mining application. A first interest, in such homaogeus data, is to find a schema common to
all of the documents analysed, which could stand for a vesycb@TD (the Document Type Definitign
or DTD, is the “grammar” of an XML document. More resource®@bXML can be found at [27]),
especially in cases like XMLMovie where the documents aremdgeneous but no DTD was formally
defined. This is close to grammatical inference [28], butgbal of grammatical inference on XML data
is to find the complete DTD of all the XML documents [29], whiishbeyond the scope of frequent tree
mining. So we ran BYADEPARENT on XMLMovie with a support of 100%, the closed frequent tree
found is shown in Fig. 27. We are assured that all the docusneiikt contain this closed frequent tree,
which can for example be useful for designing queries onetltexuments.

With lower support values, the closed frequent trees alswovab extract precise information from the
data. The next closed frequent trees come from the mininghdf MovieHtr with a support value of 5%.

Following the node nesting:

movie

/

title year countries length categories amg_rating diregtor genre keywords tones syhopsi cast prq

author

Fig. 27. Common schema to all the 100 documents of XMLMovie

awards

_cedric_gibbor
categories
_best_director_nom ‘ _best_actor_nor\h _best_picture_r{
y
_feature _bw _available_in_colorized_version @ _directors_guild_of_america 7acadew*y _academy
(a) Horizontal closed frequent tree (b) Vertical closedjfrent tree (c) Hybrid closed frequent tree

Fig. 28. Some closed frequent trees extracted from XMLMdtiaevith a support value of 5%

« The information can have an horizontal organization, likeFig. 28 (a). Here the closed frequent
tree could have been found by a simple frequent itemset gpinlgorithm, it represents frequent
children of the “categories” node. We learn that “featurtsdt are in black and white (“bw”) often
are available in a colorized version.

. The information can have a vertical organization, like ig.F28 (b). Here, through the nesting
of nodes expressing data and of nodes expressing what ttasrelaresents, we can learn that the
individual “Cedric Gibbons” was a member of the productiearh of at least 5 movies, and that his
job was to be the art director.

« Finally, most closed frequent trees, like in Fig. 28 (c), tome vertically and horizontally organized
information, which is the major advantage of tree miningrdHeve learn that at least 5% of the
movies are nominated (iom” suffix after an award name) for the following awards: thdisector
for the directors guild of America, best actor and best pectior the Academy awards. This closed
frequent tree can lead to many interpretations, for ingdhat good movies are associated with the
combination of a good director and a good main actor.

Some closed frequent trees can allow an even finer analystseadata. Consider the closed frequent
tree of Fig. 29, extracted from XMLMovieHtr with a support 2%o.

title year countries length] categone amg_rati g dlre tor ge re t%e es tones moods producers
_feature) colo _5_staris comlngofa e _adult_s snuatl n commg fa e genera ion ap 7gener+on gap
synopsis L 77 ‘ procluctlu# ‘ relatedislmll%r relatedjersor{nel relateditr’
author ‘ _director ‘ 7relat\onsm% 7m+ ‘ 7rob<%rt _leading 7pos+bl+
‘ _school ‘ _follows ‘ _runs ‘ 7wave+ ‘ _parents Jebe\h+n 70pe+e<+ 7%0
author _classic ‘ _films| ‘ _older ‘ ji\m‘ ‘ 7rema\n¥ ‘ 7Iandma‘k ‘ 7wo+d ‘ 7genera|}on _tryling| _parents _alienatign _progperity
_rebecc;
_besl_supponing_ac\ress_non* ‘ _us_nal\onal_film_regislry_v{/in _100_grealesl_american_movw%s_win

_academy _Iibrary_of_congres% ‘ _1948 ‘ _american_film_instil+le

Fig. 29. Biggest closed frequent tree from XMLMovieHtr wigzhsupport of 2%

This big closed frequent tree is shared by two movies “Rebighout a cause” (1955) and “The
Graduate” (1962). Both of these films are American, were higcesses, won awards and have a 5 star
AMG rating. But more important, the closed frequent tree \whke to capture well what is common to
these movies: they are movies about “coming of age” and ‘igeiio& gap” (from the keywords), words like
“rebellion” and “parents” appear in the synopsis, and wdikis “generation”, “parents”, “alienation” and
“prosperity” appear in the review. Such words seem to chiarae well both films made in a prosperous
America, but were the young people were less and less &trdost their parents model and tried to find
another way of life. Searching Google with these two film nanogether confirmed that these two films
are grouped together by sociologists when analyzing thersm®f the fifties-sixties (see for example
[30], found at http://www.lib.berkeley.edu/MRC/nickray.html). The shopping site Amazon.com also
rates the two movies as similar. So what is very interestiith that closed frequent tree is that it could
group together two similar movies, and even provide elemtntlescribe what make them similar. Such
kind of closed frequent trees are particularly useful fanaeptual clustering, by grouping together similar
elements and characterizing the cluster. The particulaarstdge here, due to the structural analysis of
XML data, is to provide very fine grained information, thatutm be particularly useful to people doing
a detailed analysis of the data.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have presented th@YADEPARENT algorithm, based on the computation of tiles
(closed frequent attribute trees of depth 1) in the datacemah efficient hooking strategy that reconstructs
the closed frequent trees from these tiles. This hookingtesyly is radically different from current tree
mining approaches like CMTreeMiner. Whereas CMTreeMirsgsua classical generate and test strategy
building candidate trees edge by edge, the hooking strad€dRYADEPARENT finds a complete depth
level at each iteration, and does not need expensive trepinggptests.

Thorough experiments have shown tha#MADEPARENT is faster than CMTreeMiner in most settings.
Moreover, the performances ofR’ADEPARENT are robust w.r.t. the structure of the closed frequent trees
to find, whereas performances of CMTreeMiner are biasedrttsviees having most of their edges on
their rightmost branch.

We also have shown that in the analysis of XML data, as londheslata is heterogeneousRiADE-
PARENT can provide excellent performances, allowing near reaétanalysis. We also have shown that
the closed frequent trees found could capture very integeatformation from the data.

We have proposed new benchmarks taking into account thetsteuof the closed frequent trees to test
the behavior of tree mining algorithms. As far as we knowhskind of tests is new in the tree mining
community.

Improving these benchmarks and making more detailed asmlye some of our future research direc-
tions. We think that our experiments proved that such tomsvaluable for the tree mining community.
We also plan to extend RYADEPARENT to structures more general than attribute trees.

ACKNOWLEDGEMENTS

We wish to thank especially Takeaki Uno for the LCM2 impletagion, and Yun Chi for making
available the CMTreeMiner implementation and giving ushlasa dataset. This work was partly supported
by the grant-in-aid of scientific research No. 16-04734.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential pattetnsp Eleventh International Conference on Data Engineering
P. S. Yu and A. S. P. Chen, Eds. Taipei, Taiwan: IEEE Computecie8/ Press, 1995, pp. 3-14. [Online]. Available:
citeseer.ist.psu.edu/agrawal95mining.html

[2] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery @fequent episodes in event sequencé3dta Mining and Knowledge
Discovery vol. 1, no. 3, pp. 259-289, 1997. [Online]. Available: sier.ist.psu.edu/mannila97discovery.html

(3]
(4]
(5]
(6]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]
[30]

T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, andABkawa, “Efficient substructure discovery from large sestmuctured
data,” inIn Proc. of the Second SIAM International Conference on DMdibaing (SDM2002), Arlington, VAAvril 2002, pp. 158-174.
A. Inokuchi, T. Washio, and H. Motoda, “Complete mininfifiequent patterns from graphs: Mining graph datddch. Learn, vol. 50,
no. 3, pp. 321-354, 2003.

M. Kuramochi and G. Karypis, “An efficient algorithm foristovering frequent subgraphdFEE Transactions on Knowledge and
Data Engineeringvol. 16, no. 9, pp. 1038-1051, 2004.

J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Ger“Aggregated multicast - a comparative study,” METWORKING
'02: Proceedings of the Second International IFIP-TC6 Naking Conference on Networking Technologies, Services,Rrotocols;
Performance of Computer and Communication Networks; andil@nd Wireless CommunicatiansLondon, UK: Springer-Verlag,
2002, pp. 1032-1044.

D. Shasha, J. T. L. Wang, and S. Zhang, “Unordered treengiivith applications to phylogeny,” itCDE '04: Proceedings of the
20th International Conference on Data EngineeringVashington, DC, USA: IEEE Computer Society, 2004, p. 708.

M. J. Zaki, “Efficiently mining frequent trees in a foresilgorithms and applications/EEE Transactions on Knowledge and Data
Engineering vol. 17, no. 8, pp. 1021-1035, 2005.

L. H. Yang, M. L. Lee, W. Hsu, and S. Acharya, “Mining fregnt query patterns from XML queries,” iDASFAA '03: Proceedings
of the Eighth International Conference on Database System#dvanced Applications Washington, DC, USA: IEEE Computer
Society, 2003, p. 355.

M. J. Zaki and C. C. Aggarwal, “XRules: An effective sttural classifier for xml data,” irSIGKDD 03 Washington, DC, 2003.
[Online]. Available: citeseer.ist.psu.edu/zakiO3xeegml

A. Termier, M. Rousset, and M. Sebag, “Dryade : a nhew apgh for discovering closed frequent trees in heterogentree databases,”
in International Conference on Data Mining ICDM’04, BrightoBngland 2004, pp. 543-546.

H. Arimura and T. Uno, “An output-polynomial time algtthm for mining frequent closed attribute trees,” Ibth International
Conference on Inductive Logic Programming (ILP’02pDO05.

Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz, “CMTreeMiner: Ming both closed and maximal frequent subtrees,"The Eighth
Pacific-Asia Conference on Knowledge Discovery and DataingifPAKDD’04), 2004.

P. Kilpelainen, “Tree matching problems with appticas to structured text databases,” Ph.D. dissertati@pattment of Computer
Science, University of Helsinki, November 1992, tR A-1992-

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Digering frequent closed itemsets for association rulesPatabase Theory -
ICDT '99, 7th International Conference, Jerusalem, IsraE999.

R. Agrawal and R. Srikant, “Fast algorithms for miningsaciation rules,” inProceedings of the 20th VLDB Conferen&antiago,
Chile, 1994.

M. J. Zaki and C.-J. Hsiao, “Charm: An efficient algorittfor closed itemset mining,” itn Proc. 2nd SIAM International Conference
on Data Mining, Arlington April 2002.

T. Uno, M. Kiyomi, and H. Arimura, “LCM v.2: Efficient miimg algorithms for frequent/closed/maximal itemsets,2imd Workshop
on Frequent Itemset Mining Implementations (FIMI'02D04.

M. J. Zaki, “Efficiently mining frequent trees in a fotgsin In Proc. 8th ACM SIGKDD International Conference on Knovged
Discovery and Data MiningJuly 2002.

T. Asai, H. Arimura, T. Uno, and S. ichi Nakano, “Discowe frequent substructures in large unordered treesghénProc. of the 6th
International Conference on Discovery Science (DS'@B)03, pp. 47-61.

S. Nijssen and J. N. Kok, “Efficient discovery of frequemordered trees,” ifrirst International Workshop on Mining Graphs, Trees
and Sequencef003.

Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham, “Efficient gamining for maximal frequent subtrees,” i@DM '03: Proceedings of the
Third IEEE International Conference on Data MiningWashington, DC, USA: IEEE Computer Society, 2003, p. 379.

M. J. Zaki, “Efficiently mining frequent embedded unerdd trees,Fundamenta Informaticae, special issue on Advances infgini
Graphs, Trees and Sequengegsl. 65, no. 1-2, pp. 33-52, March/April 2005.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction to Algorithms2nd ed. The MIT Press, 2001, ch. Dynamic
Programming, pp. 323-369.

R. Chalmers and K. Almeroth, “Modeling the branchingadcteristics and efficiency gains of global multicastgrem Proceedings
of the IEEE INFOCOM’'2001April 2001.

L. Denoyer, “XML mining challenge,” 2006, http://xmliming.lip6.fr/Corpus.

W. Consortium, “Extensible markup language (XML) 1fourth edition),” 2006, http://www.w3.0rg/TR/REC-xml/.

E. Gold, “Language identification in the limitfhformation and Contrglvol. 10, pp. 447-474, 1967.

Y. Papakonstantinou and V. Vianu, “DTD inference foews of XML data,” inProceedings of SIGMOD2000.

I. C. Jarvie, “America’s sociological moviesArts in Societyvol. 10, no. 2, pp. 171-181, Sum-Fall 1973.

Alexandre Termier is an Assistant Professor of Computer Science at the UiitiyerfsGrenoble. His research interests
include data mining, parallelism and peer to peer netwdfks.data mining, he is especially interested in mining trees
and directed acyclic graphs. He received a Ph.D. degree tinentuniversity of Paris-South in 2004.

Marie-Christine Rousset is a Professor of Computer Science at the University of GrkendHer areas of research
are Knowledge Representation and Information Integratiorparticular, she works on the following topics: logic-
based mediation between distributed data sources, queriting using views, automatic classification and clustgri

of semistructured data (e.g., XML documents), peer to pe¢a gharing, distributed reasoning. She has published
over 70 refereed international journal articles and canfee papers, and participated in several cooperative tiydus
university projects. She received a best paper award frorAlAA 1996, and has been nominated ECCAI fellow in
2005. She has served in many program committees of intenatconferences and workshops and in editorial boards
of several journals.

Michele Sebaggraduated at Ecole Normale Suprieure in Paris in Maths; sbeived her PhD in Computer Science
in 1990 and her Habilitation in 1997. She is with the CNRS, t@eNational de la Recherche Scientifique, since 1991,
senior researcher (Directeur de Recherche) since 2008aRiy grounded in applications for Numerical Engineering
her research interests include Relational Learning andciinge Logic Programming, Ensemble Methods, Evolutionary
Computation and Genetic Programming, and Statisticaliiegr She is on the Editorial Boards of Machine Learning
Journal, and Genetic Programming and Evolvable Hardwdéuejs Associate Editor for Knowledge and Information
Systems and was Associate Editor for IEEE Trans on Evolatpi©omputation from 1997 to 2003.

Kouzou Ohara (M’'98) received the M.E. degree in information and compigeiences from Osaka University, in
1995. He also received the Ph. D. degree from Osaka Uniyersi2002.

He is currently an Assistant Professor of the Institute ofe&dic and Industrial Research, Osaka University. His
research interests include machine learning, data mirind,personalization of intelligent systems.

He is a member of the IEEE, the AAAI, the IEICE, the IPSJ and X8Al.

Takashi Washiois a professor in Institute of Scientific and Industrial Resh (ISIR), Osaka University. He obtained
his Ph.D. in Nuclear Engineering at Tohoku University, Japa1983 on the topic of process plant diagnosis based
on qualitative reasoning. At ISIR, Osaka University, he kgoon the study of scientific discovery, graph mining and
high dimensional data mining. He received the best paperdawvam Atomic Energy Society of Japan in 1996, the
best paper award from Japanese Society for Artificial ligtefice in 2001 and Journal Award of Computer Aided
Chemistry in 2002.

Hiroshi Motoda is a professor emeritus of Osaka University and a scientdidsar of AFOSR/AOARD (Asian
Office of Aerospace Research and Development, Air Force ©ffic Scientific Research, US Air Force Research
Laboratory). His research interests include machine iegrrknowledge acquisition, scientific knowledge discgver
and data mining. He received his Bs, Ms and PhD degrees irauehgineering from the University of Tokyo. He is
a member of the the steering committee of PAKDD, PRICAI, D8 AhT. He received the best paper awards twice
from Atomic Energy Society of Japan (1977, 1984) and threesi from JSAI (1989, 1992, 2001), the outstanding
achievement awards from JSAI (2000) and Okawa Publicatitwe From Okawa Foundation (2007).

