Pattern Mining for Complex Data (DMV Lecture, M2 SIF)

Peggy Cellier peggy.cellier@irisa.fr

Last revision: October 2021

Introduction

- Reminder (Alexandre's lecture):
 - Patterns = local regularities in data
 - Frequent itemsets = regularities in transactional data (sets of elements)
- Other data?
 - Many types: sequences, trees, graphs, intervals...
 - More structured than sets (i.e. more relations between elements)
 - Also have regularities !

 \rightarrow need to extend pattern mining to structured data

Problems due to data complexity

Pattern identification in data

- FIS: simple set inclusion operation \subseteq
- Structured data:
 - Many possible inclusion definitions for sequences, trees, graphs...
 - Inclusions may be computationally expensive
- Support counting
 - Possible overlap between found occurrences
 - \rightarrow how to count support?

Complexity

- FIS: O(2^{#items})
- Structure data: search space may be exponentially bigger!
 - More precise values depend on problem

Schedule of this lecture

Sequential Pattern Mining

• Graph Mining

References and course material

- [1] « Data mining, Concepts and techniques 2nd/3rd edition» J. Han, M. Kamber and J. Pei (2011)
- [2] « The data mining and knowledge discovery handbook » Oded Maimon and Lior Rokach (2005)
- [3] Marc Plantevit's lectures (2009)
- [4] « Principle of data mining » M. Bramer (2007)
- [5] « Apprentissage artificiel » A. Cornuéjols and L. Miclet (2003)
- [6] « Relational Data Mining » S. Dzeroski and N. Lavrac (2001)
- [7] Alexandre Termier's lectures (2017)
- [8] Davide Mottin, Anton Tstitsulin's lectures (2017) Hasso Plattner Institute

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Table of Contents

Sequential Pattern Mining

- I. Introduction: what are we looking for
- II. Definitions
 - I. Vocabulary
 - II. Sequence database
 - III. Frequent sequential patterns
 - IV. Problem definition
 - V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Sequential data: What are we looking for?

• Example: Let us consider data from retail

• Products bought by a customer

What are we looking for? Repetitions considering chronology between transactions

Sequential data: What are we looking for?

• Example: Let us consider data from retail

• Products bought by a customer

What are we looking for?

Example: <(Beer Vegetable) (Chocolate)>

Sequential patterns

Informally

Read as: people who buy A and B then buy C and then buy D and E in a month

(Some) types of sequential patterns

 Substrings $B \rightarrow C \rightarrow B$ ABCBDADBBCBAAABBCBDBABDABA $\mathsf{B}\to\mathsf{C}\to\mathsf{B}\to\mathsf{A}$ ABCBDADBBCBAAABBCBDBABDABA Sequences with gaps ABC**BDA**DBBC**BAA**ABBC**BDB**A**BDA**BA **Regular expressions** $B \rightarrow \neg C \rightarrow A|B$ (A) (A) (A) (A) {A} {B} [D] {D} (A) (B) (C) (B) $\{\mathbf{B}\}$ $\{\mathbf{C}\}$ $\{\mathsf{B}\} \rightarrow \{\mathsf{C}\} \rightarrow \{\mathsf{A},\mathsf{D}\}$ Sequences of itemsets A C **Episodes** lacksquareв

Application area

Bioinformatics

- ex: patterns = parts of DNA sequences
- Health
 - ex: patterns = health care pathways

Debugging

• ex: patterns = sequences of instructions / functions calls

• Marketing

• ex: patterns = customer buying habits in time

•

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Vocabulary

• Vocabulary (reminder)

- Let $I = \{i_1, \dots, i_n\}$ be the set of all items.
- An itemset is a subset of *I* and denoted $(i_1i_2...i_m)$ where $i_k \in I$

• Sequence

- A sequence s is an <u>ordered</u> list of itemsets denoted by <s₁s₂...s_p>
- Order can be:
 - Implicit: position of elements
 - <u>Ex</u>: DNA ACCGT \Leftrightarrow <A, C, C, G, T>
 - **Explicit**: elements + timestamps
 - <u>Ex</u>: Log <(1, pushButton), (2, endOfWorld)>

k-sequence

- A k-sequence is a sequential pattern of length k (k items).
- Examples
 - <(a b) (c) (d e)> is a **5-**sequence.
 - <(a) (c) (d e)> is a **?-**sequence.
 - <(a) (c) (d) (z) (y)> is a **?-**sequence.

Sequence Database

A sequence database consists of ordered elements or events

transaction	database
-------------	----------

VS

sequence database

TID	itemsets			
10	a b d			
20	acd			
30	adef			
40	e f			

SID	sequences				
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>				
20	<(ad)c(bc)(ae)>				
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>				
40	<eg(af)cbc></eg(af)cbc>				

Note: Implicit timestamp here

Sequence Database

Dataset

• Transactions \rightarrow Sequences of itemsets with **timestamp** (date)

• Example

Date	Monday	Tuesday	Wednesday	Thursday	
SeqId					
S ₁	abc	bde	abf ad		
S ₂	abc	abc	-	bcf	
S ₃	bce	-	adf	abc	
S ₄	acf	bd	abf	е	

seq. inclusion – sub-sequence – super-sequence 17

- Sequence inclusion
 - Let $S_1 = \langle a_1, \dots, a_n \rangle$ and $S_2 = \langle b_1, \dots, b_m \rangle$ be two sequences.
 - S_1 is a sub-sequence of S_2 or S_2 is a super-sequence of S_1
 - denoted by $S_1 \subseteq S_2$
 - If there are integers $1 \le i1 < i2 < ... < in \le m$ s.t. $a_1 \subseteq b_{i1}, a_2 \subseteq b_{i2}, ..., a_n \subseteq b_{in}$
 - Examples
 - S1=<(10) (20 30) (40) (20)>
 - S2=<(20) (40)> **⊆** S1 ?
 - S3=<(20) (30)> **⊆** S1 ?

Sequential Patterns

Sequential pattern

- A **sequential pattern** is defined as a sequence <*X*₁, ..., *X*_n>
- where X_i is an itemset.
- Example
 - <(a b) (c) (d e)>
 - a and b are synchronous
 - d and e are synchronous
 ==> they share the same timestamp
 - c happens after a and b
 - d and e happen after c
- Support
 - A sequence S supports a sequential pattern P if $P \subseteq S$.
 - The support value of P, denoted by sup(P) is then defined as the proportion of sequences supporting P.
- Frequent sequential pattern
 - A sequential pattern S is frequent if sup(S) >= minsup
 - where minsup is a given threshold

Example of sequential patterns

seq./date	d ₁	d ₂	d ₃	d ₄	
S ₁	abc	bde	abf	ad	
S ₂	abc	abc	-	bcf	
S ₃	bce	-	adf	abc	
S ₄	acf	bd	abf	е	

• sup(<(ac) (b) (bf)>)

- Exercise: Compute the support value of the following sequential patterns
 <(a) (bd) (a)>
 - <(b) (b) (f)>
 - <(b) (d) (f)>
 - <(cf) (b)>

Sequential pattern mining: problem definition

• Given

- a sequence database: D
- the minimum support threshold: *minsup*

- Problem definition
 - The problem of sequential patern mining is to find the set of **all** frequent subsequences from *D* wrt *minsup*.

Discussion about time parameters

• 3 main time parameters/constraints

- 1. Duration of sequences (data preparation)
- 2. Granularity of itemsets (data preparation)
- 3. Time gap between itemsets

Duration of sequences

Duration of sequences

- Chunking size of target sequences
- Preprocessing
- Examples
 - Complete sequences
 - Specified time interval
 - Split into years, months...
- Last chunking strategy enables periodical sequential patterns
 - "Each year, a wet spring results in increased bookings of travels abroad in summer"

Event folding window

• Event folding window

- Atomicity of transactions happening within a given time interval
- Preprocessing
- "Which time unit?"
- Examples
 - Grocery: sales of a week
 - Travel agency: travels purchased during a year

granularity (ab) (c) (abc) (a) (b)**(C)** (a) (a)

Event folding window

Event folding window => Important choice

- Too short interval \Rightarrow low support sequences
 - Example: sequences with a too fine grain
 - <A,B,C> or <B,A,C> instead of having <AB,C>
- Too long interval \Rightarrow no more (or less) sequentiality
 - <u>Example</u>: Sequence with a big grain
 - <AB> instead of <A,B>
 - ordering between A and B has disappeared

granularity (ab) (C) (abc) (a)_. (a) (b)**(C)** (a)

Gap constraint

• Time gap between itemsets

- Number of time units between successive itemsets of sequential patterns
 - Until which time gap do one still consider that there is sequentiality?
- Intuitively, delete too far events

Gap constraint

• Time gap between itemsets

- Number gap=0 => contiguous
 - transactions succeed immediately
 - E.g., "sales of A, B, C in 3 successive weeks" (time unity is the week)
- $gap_{min} \le gap \le gap_{max}$
 - Transaction cannot be too close nor to far
 - E.g., "If someone rents the movie *Matrix reloaded*, he may probably also rent *Matrix revolutions* within the 15 days" (time unity is the day)
- Infinite gap
 - Only sequentiality

- Application of time constraints
 - **Duration** and **granularity** are usually applied **before** the extraction
 - To prepare the sequence database
 - Whereas gap is used when mining
 - To extract the sequential patterns

Other constraints

• Time-relative constraints are only some of possible constraints

=> Other constraints

- incompatibility between items
- templates (regular expressions)
- length of patterns
- ...

Exercise

• Exercise

- Consider the following parameter to extract patterns
 - Time gap = [0,1]
- Compute the support values of
 - <(a) (bd) (a)> = <a (bd) a>
 - <(b) (b) (f)> = <b b f>
 - <(b) (d) (f)> = <b d f>
 - <(cf) (b)> = <(cf) b>

Seq./t	t=1	t=2	t=3	t=4	t=5	t=6
S ₁	abc	b	de	af	b	ad
S ₂	abc	bc	a	bcf		
S ₃	bce	adf	е	abc	f	
S ₄	acf	bd	abf	е		

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Search Space for itemset mining (lattice)

Search Space for sequential pattern mining

. . .

Sequential Pattern Mining Algorithms

• Apriori-based Algorithms (also named Generate & Prune)

- Horizontal Data Format Algorithms
 - **GSP** (hash tree)
 - PSP (prefix tree less memory)
- Vertical Data Format Algorithms
 - SPADE
 - SPAM
 - LAPIN-SPAM

Pattern Growth Algorithms

- FreeSpan
- PrefixSpan

• Extensions

- Closure
 - CloSpan
 - BIDE
 - Gap-BIDE
 - Clasp
- Episode Mining
 - Minepi, Winepi
- Constraints
 - SPIRIT
 - SDMC

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential
 - II. PatternsMining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

General Approach: generate/prune

34

GSP (Generalized Sequential Pattern) mining algorithm

- [Agrawal and Srikant, EDBT' 96]
- In the same vein as Apriori for frequent itemset mining
- GSP is a horizontal data format based SPM algorithm.

N=N+1

• Requirements:

- 2 kinds of extensions => to generate candidates
- the anti-monotony property => to prune candidates

2 kinds of extension

S-extension

Add an itemset to the sequence

Example: $\langle (a,b)(c) \rangle \rightarrow \langle (a,b)(c)(d) \rangle$

I-extension

Add an item into an existing itemset of the sequence

Example: $\langle (a,b)(c) \rangle \rightarrow \langle (a,b)(c,d) \rangle$

Anti-monotony property

• <u>Property</u>:

- If a k-sequence is not frequent
- THEN all (k+1) sequences which contain it are not frequent too.

• Example:

- IF *sup*(<(A),(B,C)>) < *minsup*
- THEN *sup*(<(A),(B,C),(D)>) << *minsup*
- This property allows to adapt Apriori to extract
 - Frequent sequential patterns
 - (and thus temporal association rules)

GSP: based on Apriori

- Method in details
 - generate frequent length-1 candidates from frequent items in DB : <A>,
 - generate frequent length-2 candidates by self-joining 2 frequent length-1 patterns:
 <(A) (A)>, <(A) (B)>, <(A B)>
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori (self-join)
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori property (anti-monotonicity)
- Self-join s₁ et s₂:
 - Remove first element of s1 (s1-first_{s1}) and last element of s2 (s₂-last_{s2})
 - If $(s_1-first_{s1}) = (s_2-last_{s2})$ then generate s_1+last_{s2}
 - Examples

Example (GSP)

Sequence database

- 8 items
- 5 sequences
- (minsup=2)

ld_seq	Séquence
1	<(bd) (c) (b) (ac)>
2	<(bf) (ce) (b) (fg)>
3	<(ah) (bf) (a) (b) (f)>
4	<(be) (ce) (d)>
5	<(a) (bd) (b) (c) (b) (ade)>

Example (GSP)

Sequence database

- 8 items
- 5 sequences
- (minsup=2)

ld_seq	Séquence
1	<(bd) (c) (b) (ac)>
2	<(bf) (ce) (b) (f <mark>g</mark>)>
3	<(a <mark>h</mark>) (bf) (a) (b) (f)>
4	<(be) (ce) (d)>
5	<(a) (bd) (b) (c) (b) (ade)>

- N=1
- Candidate generation
- Pruning unfrequent patterns
 - 6 frequent sequences with 1 item

Candidate	Support
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
<g></g>	
<h>></h>	

Example (GSP)

S-extension

• N=2

- Candidate generation
 - 51 sequences with 2 items

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

41

I-extension

	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>	<u>Remark</u> :
			<(bc)>	<(bd)>	<(be)>	<(bf)>	Without Apriori property, 8*8+8*7/2=92 candidates
<c></c>				<(cd)>	<(ce)>	<(cf)>	Apriori property prunes
<d></d>					<(de)>	<(df)>	44.57% candidates
<e></e>						<(ef)>	
<f></f>							

The most time consuming step of GSP

Computation of the candidate support

- Candidates stored in main memory
- It's important to limit the disk access
 - Load the sequence database in memory when it's possible

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

SPADE

- SPADE (Sequential Pattern Discovery using Equivalent classes)
 - [Zaki, ML'01]
 - SPADE is a SPM algorithm based on a vertical data format.

SID	Séquence	
1	<(bd) c b (ac)>	
2	<(bf) (ce) b (fg)>	
3	<(ah) (bf) a b f>	
4	<(be) (ce) d>	
5	<a (ade)="" (bd)="" b="" c="">	

Vertical format 45

(a		b	(C	(d		9		f		5		h
SID	EID														
1	4	1	1	1	2	1	1	2	2	2	1	2	4	3	1
3	1	1	3	1	4	4	3	4	1	2	4				
3	3	2	1	2	2	5	2	4	2	3	2				
5	1	2	3	4	2	5	6	5	6	3	5				
5	6	3	2	5	4										
		3	4												
		4	1												
		5	2												
		5	3												

SPADE algorithm

46

Algorithm

- Scan DB and then transforms the database into the vertical format
- Filter non frequent 1-sequences (count the number of =/= SID)
 - Example with minsup=4: Frequent 1-sequences: , <c>

ŀ	6	• R	Repeat until no more sequences can be generated						
SID	EID		• Joi	k-sequences such that they share SID and the EIDs follow the					
1	1		sec	quential ordering					
1	3	(С						
2	1	SID	EID						
2	3	1	2						
3	2	1	4						
3	4	2	2						
4	1	4	2						
5	2	5	4						
5	3	L							
5	5								

SPADE algorithm

Algorithm

- Scan DB and then transforms the database into the vertical format
- Filter non frequent 1-sequences (count the number of =/= SID)
 - Example with minsup=4: Frequent 1-sequences: , <c>
- Repeat until no more sequences can be generated
 - Join k-sequences such that they share SID and the EIDs follow the sequential ordering
 - Filter non frequent (k+1)-sequences (count the number of =/= SID)

To reduce space memory

- Join two k-sequences that have all subsequences in common except the last element (cf itemset => lexicographical improvement)
- store only one EID, the one of the last element
- lattice decomposition (class of sequences)

Drawbacks of generate/prune approaches

A lot of irrelevant candidates are generated

- For instance, for 1000 frequent sequences with 1 item, the number of candidate sequences with 2 items is:
 - 1000 x 1000 x (1000 x 999)/2 = 1 499 500
- Several readings of the sequence database
- Beam search approach is memory-consuming
- To extract long sequences, that kind of approaches is not adapted
 - Exponential number of candidate subsequences are generated
 - E.g., for a 100-sequence: 2¹⁰⁰ 1 ≈10³⁰

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

General Idea of Pattern Growth Approaches

- No candidate generation
- Frequent items are extracted from projected bases
- Greedy algorithm
- [Pei et al, ICDE'01]

Use frequent prefix to divide the search space
 and compute projected bases

Look for only relevant sequences

Definition

• Definition: suffix

- Let S=<I1, ..., In> be a sequence.
- Let S'=<l'1, ..., l'm> be a subsequence of S.
- S" =<Jo, ..., Jn> is a suffix of S w.r.t. S' if:
 - <I1, ..., Io> is the smallest prefix that contains S'
 - And all items from (Jo I'm) are ordered after element of I'm in Io.

• Examples

- S = <(a) (abc) (ac) (d) (cf)>
- Suffix(<a>) = <(abc) (ac) (d) (cf)>
- Suffix(<(a)(b)>) = <(c) (ac) (d) (cf)>

Projected base

ld_seq	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Prefix	Projection
<a>	<(abc)(ac)d(cf)>
	<(_d)c(bc)(ae)>
	<(_b)(df)cb>
	<(_f)cbc>

PrefixSpan (Pei et al. @ICDE' 01)

- Informal algorithm
 - <u>Step 1</u>:
 - Extraction of **frequent 1-sequences**
 - Example: <a>, , <c>, <d>, <e>, <f>, <g>
 - The set of sequential patterns is thus divided into 7 subsets
 - Ones that start with <a>
 - Ones that start with
 - Ones that start with <c>
 - Ones that start with <d>
 - Ones that start with <e>
 - Ones that start with <f>
 - Ones that start with <g>
 - <u>Step 2</u>:
 - Computation of the **projected base** for each prefix
 - <u>Step 3</u>:
 - For each prefix, computation of candidates to be an extension.
 - The frequent candidates are added and the extension becomes a new prefix.
 - Go to Step 2
 - End: No more prefix can be generated

Projected base

• Exercise

- minsup=4 (absolute support) equivalent to relative support 4/4=1 (100%)
- Apply PrefixSpan on the following database

ld_seq	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)ccb>
40	<eg(af)cbc></eg(af)cbc>

• Exercise

ld_seq	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)ccb>
40	<eg(af)cbc></eg(af)cbc>

- Step 1: frequent 1-sequences
 - Sup(<a>)=4
 - Sup()=4
 - Sup(<c>)=4
 - Sup(<d>)=3
 - Sup(<e>)=3

 - Sup(<g>)=1

Projected base

- Step 2(1): Projected databases
 - Prefix: <a>

•	Prefix:	<þ>
---	---------	-----

ld_seq	Projected DB
10	<(abc)(ac)d(cf)>
20	<(_d)c(bc)(ae)>
30	<(_b)(df)ccb>
40	<(_f)cbc>
ld_seq	Projected DB
Id_seq 10	Projected DB <(_c)(ac)d(cf)>
	-
10	<(_c)(ac)d(cf)>

• Prefix: <c>

ld_seq	Projected DB
10	<(ac)d(cf)>
20	<(bc)(ae)>
30	<cb></cb>
40	<bc></bc>

- Step 3(1): item-extensions
 - Prefix: <a>
 - b
 - C
 - Prefix:
 - Ø

- Prefix: <c>
 - C

ld_seq	Projected DB
10	<(abc)(ac)d(cf)>
20	<(_d)c(bc)(ae)>
30	<(_b)(df)ccb>
40	<(_f)cbc>
ld_seq	Projected DB
ld_seq 10	Projected DB <(_c)(ac)d(cf)>
10	<(_c)(ac)d(cf)>

ld_seq	Projected DB
10	<(ac)d(cf)>
20	<(bc)(ae)>
30	<cb></cb>
40	<bc></bc>

- Step 2(2): projected database
 - Prefix: <ab>

• Prefix: <ac>

	i
ld_seq	Projected DB
10	<(_c)(ac)d(cf)>
20	<(_c)(ae)>
30	<>
40	<c></c>

ld_seq	Projected DB
10	<(ac)d(cf)>
20	<(bc)(ae)>
30	<cb></cb>
40	<bc></bc>

ld_seq	Projected DB
10	<d(cf)></d(cf)>
20	<(ae)>
30	
40	<>

• Prefix: <cc>

- Step 3(2): item-extensions
 - Prefix: <ab>

• Ø

- Prefix: <ac>
 - C

- Prefix: <cc>
 - Ø

ld_seq	Projected DB
10	<(_c)(ac)d(cf)>
20	<(_c)(ae)>
30	<>
40	<c></c>
	Ducie ste d DD

ld_seq	Projected DB
10	<(ac)d(cf)>
20	<(bc)(ae)>
30	<cb></cb>
40	<bc></bc>

ld_seq	Projected DB
10	<d(cf)></d(cf)>
20	<(ae)>
30	
40	<>

Projected base

- Step 2(3): projected database
 - Prefix: <acc>

ld_seq	Projected DB
10	<d(cf)></d(cf)>
20	<(ae)>
30	
40	<>

Projected base

- Step 2(3): projected database
 - Prefix: <acc>

• Ø

ld_seq	Projected DB	
10	<d(cf)></d(cf)>	
20	<(ae)>	
30		
40	<>	

• END

- Result
 - <a>, , <c>
 - <a b>, <a c>, <c c>
 - <a c c>

Advantages of PrefixSpan

- No candidate generation
- The projected sequence database is smaller at each step
- The most consuming step
 - Projected database building
 - Improvement thanks to pseudo-projections

Pseudo Projection

Instead of copy sequence database at each step, use

- pointers on the sequence
- and offset to identify the suffix

$$s = < a (abc) (ac) d (cf) >$$

 $\downarrow < a >$
 $s | < a > : (, 2) < (abc) (ac) d (cf) >$
 $\downarrow < ab >$
 $s | < ab > : (, 4) < (_c) (ac) d (cf) >$

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Closed and Maximal Sequential Patterns

• Definition

- A sequential pattern s is **closed** over a set of patterns S
- Iff ∄s'∈S, s⊆s' (or ∀s'∈S, s⊈s')
- s.t. sup(s)=sup(s')

Definition

- A sequential pattern s is maximal over a set of patterns S
- Iff $\exists s' \in S, s \subseteq s'$ (or $\forall s' \in S, s \not\subseteq s'$)

• Example

• Let us consider the following set of sequences

Pattern	Support	Maximal ?	Closed ?
<(ab) (c) (e)>	2		
<(a) (c) (d)>	4		
<(a) (c) (e)>	3		
<(c) (d) (e)>	5		
<(a) (c)>	4		
<(b)>	7		

Closed and Maximal Sequential Patterns

- How to compute those patterns?
 - As postprocessing
 - With specific algorithms (e.g., CloSpan, BIDE)

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Mining sequential patterns with gap constraints 70

How to take into account gap constraints ?

• Approach 1:

- Mine sequential patterns without gap constraints
- Postprocess the discovered patterns

• Approach 2:

- Modify GSP to directly prune candidates that violate gap constraints
- Question:
 - Does Apriori principle (anti-monotonicity) still hold?

Mining sequential patterns with gap constraints 71

• Does Apriori principle (anti-monotonicity) still hold?

Seq. ID	Sequence	
10	<(a <u>b</u> d)(bc)(<u>e</u>)>	
20	<(ab)(bcd) >	
30	<(a <u>b</u>)(bcd)(bd <u>e</u>)>	
40	<(<u>b</u>)(c)(d)(d <u>e</u>)>	
50 <(ac)(bde) >		

Problem exists because of maxgap **constraint**

No such problem if maxgap is infinite

Mining sequential patterns with gap constraints 72

Contiguous subsequences

• <u>Definition</u>: contiguous

- s is a **contiguous subsequence** of w = <e1>< e2>...< ek>
- if any of the following conditions hold:
 - s is obtained from w by deleting an item from either e1 or ek
 - s is obtained from w by deleting an item from any element e_i that contains at least 2 items
 - s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)

• Example:

- s = < (a) (b) >
- is a contiguous subsequence of
 (a) (b c)>, < (a b) (b) (c)>, and < (c d) (a b) (b c) (d) >
- is not a contiguous subsequence of
 (a) (c) (b)> and < (b) (a b) (c) (b)>

Mining sequential patterns with gap constraints 73

Contiguous subsequences [Gap-Bide]

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate *k*-sequence is pruned
 - if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate *k*-sequence is pruned
 - if at least one of its **contiguous** (*k*-1)-subsequences is infrequent

For candidate <(b) (c) (e)>

Check 2 contigous 2-subsequences:

- <(b) (c)>
- <(c) (e)>

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)

Episode Mining

Episode mining

=

analysing sequences of events to discover recurrent episodes

[Mannila et al. DMKD'97]

• Event sequence

• Alarms in telecommunication network

• User interface actions

Occurrences of recurrent illnesses

Episode Mining

- Event types
 - R = {A='eat', B='work', C='prepare coffee', D='wake up'}
- Occurrence times
 - integer \rightarrow 10 ... 150
- Event: pair (E, t)
 - E: event type
 - t: occurrence time
 - <u>Example</u>: (A,30)
- Sequence on R: S = (s, T_s , T_e)
 - Example:
 - s= <(D,10), (C,20), ..., (A,150)>
 - starting time: $T_s = 10$
 - ending time: $T_e = 150$
- A time slot may contain 0, 1 or several events

Episode Mining

Episode

- Informally, an episode is a partially ordered collection of events occurring together
- $E = (V, \leq)$
 - V: collection of event types
 - ≤: partial order

Occurences

- Episode *E* occurs in a sequence *S*
- if it's possible to match event types of *E* on events of *S*
- so that the partial order ≤ is respected

Partial orders

<u>Note</u>: We mostly consider the discovery of serial and parallel episodes

WINEPI: sliding window

• The name of the WINEPI method comes from the technique it uses: a sliding window

• Sliding window

- A window is slided through the event-based data sequence
- Each window "snapshot" is like a row in a database
- The collection of these "snapshots" forms the rows in the database

•

N° Sequence D 1 2 DC DCA 3 4 DCAB 5 CABD **ABDA** 6 7 **BDAB** 8 DABC 9 ABC 10 BC С 11

Window width: 40 s

last point excluded

First (last) window contains first (last) point:

11 possible windows on the example

- The frequency/support of an episode α is
 - « the fraction of windows in which the episode occurs »
 - defined as $fr(\alpha, S, w) = \frac{|\{S_w \in W(S, w) \mid \alpha \text{ occurs in } S_w\}|}{|W(S, w)|}$
 - w: window width
 - Where W(S, w) is the set of all windows of S w.r.t w
- An episode is frequent if
 - $fr(\alpha, S, w) \geq \min_{\text{freq}} (\text{threshold})$
- Anti-monotonicity
 - if episode α is frequent then all subepisodes $\beta \subseteq \alpha$ are frequent.

WINEPI algorithm

• Input:

- A set **R** of event types,
- an event sequence **s** over *R*,
- a set E of episodes, // parall or serial
- a window width *win*,
- and a frequency threshold *min_fr*

Output:

- The collection of frequent episodes: F(s, win, min_fr)
- **1.** compute $C_1 \leftarrow \{\alpha \in E \mid |\alpha| = 1\};$

2. *i* = 1;

3. while $C_i \neq \emptyset$ do

Test of frequency

4. // Database pass compute $F_i(s, win, min_fr) \leftarrow \{\alpha \in C_i \mid fr(\alpha, s, win) \ge min_fr\};$

5. *i* **€** *i*+1:

6. // Candidate generation

compute $C_i \leftarrow \{\alpha \in E \mid |\alpha| = i, \text{ and } \forall \beta \in E \text{ s.t. } \beta \subseteq \alpha \text{ and } \beta \in F_{|\beta|}(s, win, min_fr),\};$

7. for all i do ouptut F_i(s, *win, min_fr*)

All subepisodes have to be frequent

WINEPI algorithm: generation of candidate episodes 82

- Example: find all parallel episodes with frequency > 40 %
- (present in at least 5 windows)
 - Create singletons, i.e., parallel episodes of size 1
 - A, B, Č, D
 - Select the frequent singletons
 - here all are
 - From those frequent episodes, build candidate episodes of size 2
 - AB, AC, AD, BC, BD, CD
 - Select the frequent parallel episodes of size 2
 - here all are
 - From those frequent episodes, build candidate episodes of size 3
 - ABC, ABD, ACD, BCD
 - Select the frequent episodes of size 3
 - only **ABD** occurs in more than four windows
 - There are no candidate episodes of size four

Alternative: MINEPI

- [Mannila et al. DMKD'97]
- Alternative approach to discover episodes
 - No sliding windows
 - For each potentially interesting episode, find out the exact occurrences
- Minepi is based of the notion of minimal occurrences

Minimal occurrence

- Formally, given a episode α and an event sequence S, the interval [t_s,t_e] is a minimal occurrence α of S,
 - If $\boldsymbol{\alpha}$ occurs in the window corresponding to the interval
 - And If α does not occur in any proper subinterval
- The set of minimal occurrences of an episode α in a given event sequence is denoted by $mo(\alpha)$:
 - $mo(\alpha) = \{ [t_s, t_e] | [t_s, t_e] \text{ is a minimal occurrence of } \alpha \}$
- Example
 - β consisting of event types A and B has three minimal occurrences in s: mo(β) = {[30,40], [40,60], [60,70]}
 - Note: ([30,70] is not minimal)
 - α has one occurrence in s: $mo(\alpha) = \{[60, 80]\}$
 - Note: ([30,80] is not minimal)

β:

Minepi

• Task: Find all serial episodes

- Using maximum time bound of 40 secs
- min_fr=1
- Create singletons, i.e., episodes of size 1
 - (A, B, C, D)
- Create an occurrence table
 - will use inverse tables
 - A: 30, 60 ; B: 40, 70 ; C: 20, 80 ; D: 10, 50
- Recognize the frequent singletons
 - here all are
- From frequent episodes of size 1 build candidate episodes of size 2
 - AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC
- Use the inverse table to create minimal occurrences for the candidates
 - Mo(AB)={[30,40], [60,70]}
 - Read the first occurrence of A (30-30), and find the first following B (40-40)
 - Read the second occurrence of A (60-60), and find the first following B (70-70)
 - Continue with BA, AC etc
- Recognize the frequent episodes of size 2
 - here almost are
- From frequent episodes of size 2 build candidate episodes of size 3
- And so on

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for

II. Definitions

- I. Vocabulary
- II. Sequence database
- III. Frequent sequential patterns
- IV. Problem definition
- V. Discussion about time parameters
- III. Sequence mining algorithms
 - I. Search space
 - II. Apriori based approaches (Generate & Prune)
 - I. GSP
 - II. SPADE
 - III. Pattern growth Approach
 - I. PrefixSpan
- IV. To go further
 - I. Closed and Maximal Sequential Patterns
 - II. Mining sequential patterns with gap constraints
 - III. Episode mining (Winepi)