Pattern Mining for Complex Data

(DMV Lecture, M2 SIF)

Peggy Cellier
peggy.cellier@irisa.fr

Last revision: October 2021

- Reminder (Alexandre's lecture):
- Patterns = local regularities in data
- Frequent itemsets = regularities in transactional data (sets of elements)
- Other data?
- Many types: sequences, trees, graphs, intervals...
- More structured than sets (i.e. more relations between elements)
- Also have regularities !

Thymine (Yellow) $=T \quad$ Guanine (Green) $=G$ Adenine $($ Blue $)=\mathbf{A} \quad$ Cytosine $($ Red $)=\mathbf{C}$

\rightarrow need to extend pattern mining to structured data

Problems due to data complexity

- Pattern identification in data
- FIS: simple set inclusion operation \subseteq
- Structured data:
- Many possible inclusion definitions for sequences, trees, graphs...
- Inclusions may be computationally expensive
- Support counting
- Possible overlap between found occurrences
- \rightarrow how to count support?
- Complexity
- FIS: O(2 $\left.2^{\text {\#items }}\right)$
- Structure data: search space may be exponentially bigger!
- More precise values depend on problem

Schedule of this lecture

- Sequential Pattern Mining
- Graph Mining
- [1] « Data mining, Concepts and techniques 2 ${ }^{\text {nd } / 3 r d ~ e d i t i o n » ~-~ J . ~ H a n, ~ M . ~}$ Kamber and J. Pei (2011)
- [2] «The data mining and knowledge discovery handbook » - Oded Maimon and Lior Rokach (2005)
- [3] Marc Plantevit's lectures (2009)
- [4] «Principle of data mining » - M. Bramer (2007)
- [5] «Apprentissage artificiel » - A. Cornuéjols and L. Miclet (2003)
- [6] «Relational Data Mining » - S. Dzeroski and N. Lavrac (2001)
- [7] Alexandre Termier’s lectures (2017)
- [8] Davide Mottin, Anton Tstitsulin's lectures (2017) - Hasso Plattner Institute

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

- Example: Let us consider data from retail
- Products bought by a customer

What are we looking for?

Repetitions

considering chronology between transactions

- Example: Let us consider data from retail
- Products bought by a customer

What are we looking for?

Informally
<(A B) C (D E)>
\downarrow
$$
\mathrm{A}, \mathrm{~B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}, \mathrm{E}
$$
1 month
Read as:
people who buy A and B
then buy C
and then buy \mathbf{D} and \mathbf{E}
in a month

(Some) types of sequential patterns

- Substrings
$B \rightarrow C \rightarrow B$
$A B C B D A D B B C B A A B B C B D B A B D A B A$
- Sequences with gaps
$\mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$
$A B C B D A D B C B A A A B C B D B A B D A B A$
- Regular expressions

$$
\mathrm{B} \rightarrow \neg \mathrm{C} \rightarrow \mathrm{~A} \mid \mathrm{B}
$$

ABCBDADBBCBAAABBCBDBABDABA

- Sequences of itemsets
$\{B\} \rightarrow\{C\} \rightarrow\{A, D\}$

- Episodes

Application area

- Bioinformatics
- ex: patterns = parts of DNA sequences
- Health
- ex: patterns = health care pathways
- Debugging
- ex: patterns = sequences of instructions / functions calls
- Marketing
- ex: patterns = customer buying habits in time

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Vocabulary

- Vocabulary (reminder)
- Let $I=\left\{i_{1}, \ldots, i_{n}\right\}$ be the set of all items.
- An itemset is a subset of I and denoted $\left(i_{1} i_{2} \ldots i_{m}\right)$ where $i_{k} \in I$

- Sequence

- A sequence s is an ordered list of itemsets denoted by $\left\langle s_{1} s_{2} \ldots s_{p}\right\rangle$
- Order can be:
- Implicit: position of elements
- Ex: DNA - ACCGT $\Leftrightarrow<A, C, C, G, T>$
- Explicit: elements + timestamps
- Ex: Log -<(1, pushButton), (2, endOfWorld)>
- k-sequence
- A k-sequence is a sequential pattern of length k (k items).
- Examples
- <(a b) (c) (d e)> is a 5-sequence.
- <(a) (c) (d e)> is a ?-sequence.
- < (a) (c) (d) $(z)(y)>$ is a ?-sequence.

Sequence Database

- A sequence database consists of ordered elements or events
transaction database

TID	itemsets
10	a b d
20	a c d
30	a d e f
40	e f

vs
sequence database

SID	sequences
10	$<a(a b c)(a \underline{a}) d(c f)>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \underline{\mathrm{cb}}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Note: Implicit timestamp here

Sequence Database

- Dataset
- Transactions \rightarrow Sequences of itemsets with timestamp (date)
- Example

Seqld	Mate	Tuesday	Wednesday	Thursday
S_{1}	abc	bde	abf	ad
S_{2}	abc	abc	-	bcf
S_{3}	bce	-	adf	abc
S_{4}	acf	bd	abf	e

- Sequence inclusion

- Let $S_{1}=<a_{1}, \ldots, a_{n}>$ and $S_{2}=<b_{1}, \ldots, b_{m}>$ be two sequences.
- S_{1} is a sub-sequence of S_{2} or S_{2} is a super-sequence of S_{1}
- denoted by $S_{1} \subseteq S_{2}$
- If there are integers $1 \leq i 1<i 2<\ldots<i n \leq m$ s.t. $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 2}, \ldots, a_{n} \subseteq b_{i n}$
- Examples
- $\mathrm{S} 1=<(10)(2030)(40)(20)>$
- $\mathrm{S} 2=<(20)(40)>\mathrm{S} 1$?
- $\mathrm{S} 3=<(20)(30)>\mathrm{S} 1$?

Sequential Patterns

- Sequential pattern
- A sequential pattern is defined as a sequence $<X_{1}, \ldots, X_{n}>$
- where X_{i} is an itemset.
- Example
- < (a b) (c) (d e)>
- a and b are synchronous
- d and e are synchronous
===> they share the same timestamp
- c happens after a and b
- d and e happen after c
- Support
- A sequence S supports a sequential pattern P if $P \subseteq S$.
- The support value of P, denoted by $\sup (P)$ is then defined as the proportion of sequences supporting P.
- Frequent sequential pattern
- A sequential pattern S is frequent if $\sup (S)>=$ minsup
- where minsup is a given threshold

Example of sequential patterns

seq./date	d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	$\mathrm{~d}_{4}$
$\mathrm{~S}_{1}$	abc	bde	abf	ad
S_{2}	abc	abc	-	bcf
S_{3}	bce	\cdot	adf	$a b c$
$\mathrm{~S}_{4}$	acf	bd	abf	e

- $\sup (<(\mathrm{ac})(\mathrm{b})(\mathrm{bf})>)$
- Exercise: Compute the support value of the following sequential patterns
- <(a) (bd) (a)>
- <(b) (b) (f)>
- <(b) (d) (f)>
- <(cf) (b)>

Sequential pattern mining: problem definition

- Given
- a sequence database: D
- the minimum support threshold: minsup
- Problem definition
- The problem of sequential patern mining is to find the set of all frequent subsequences from D wrt minsup.

Discussion about time parameters

- 3 main time parameters/constraints

1. Duration of sequences (data preparation)
2. Granularity of itemsets (data preparation)
3. Time gap between itemsets
```
                duration granularity
```


Duration of sequences

- Duration of sequences
- Chunking size of target sequences
- Preprocessing
- Examples
- Complete sequences
- Specified time interval
- Split into years, months...
- Last chunking strategy enables periodical sequential patterns
- "Each year, a wet spring results in increased bookings of travels abroad in summer"
duration
(a)
(b)
(c)
(a) (b) (ab)
(c) (abc)
$\xrightarrow{(a)}$

Event folding window

- Event folding window
- Atomicity of transactions happening within a given time interval
- Preprocessing
- "Which time unit?"
- Examples
- Grocery: sales of a week
- Travel agency: travels purchased during a year
granularity
(a)
(b)
(c)
(a) (b) (ab)
(c) $(a b c)$
$\xrightarrow{(\mathrm{a})}$

Event folding window

Event folding window => Important choice

- Too short interval \Rightarrow low support sequences
- Example: sequences with a too fine grain
- <A,B,C> or <B,A,C> instead of having <AB,C>
- Too long interval \Rightarrow no more (or less) sequentiality
- Example: Sequence with a big grain
- <AB> instead of $\langle A, B>$
- ordering between A and B has disappeared

granularity

(a)
(b)
(c)
(a) (b) (ab)
(c) $(a b c)$
(a)

- Time gap between itemsets
- Number of time units between successive itemsets of sequential patterns
- Until which time gap do one still consider that there is sequentiality?
- Intuitively, delete too far events
(a) (b) (c) $\underbrace{}_{\text {gap }}$
- Time gap between itemsets
- Number gap=0 => contiguous
- transactions succeed immediately
- E.g., "sales of A, B, C in 3 successive weeks" (time unity is the week)
- gap $_{\text {min }} \leq \operatorname{gap} \leq$ gap $_{\max }$
- Transaction cannot be too close nor to far
- E.g., "If someone rents the movie Matrix reloaded, he may probably also rent Matrix revolutions within the 15 days" (time unity is the day)
- Infinite gap
- Only sequentiality
(a)
(b) (c
(a)
(ab)
(c) (abc)
(a)

About constraints

- Application of time constraints
- Duration and granularity are usually applied before the extraction
- To prepare the sequence database
- Whereas gap is used when mining
- To extract the sequential patterns
- Other constraints
- Time-relative constraints are only some of possible constraints
=> Other constraints
- incompatibility between items
- templates (regular expressions)
- length of patterns
- ...
duration granularity
(a)
(b)
(c)

- Exercise
- Consider the following parameter to extract patterns
- Time gap $=[0,1]$
- Compute the support values of
- <(a) (bd) (a)> = <a (bd) a>
- <(b) (b) (f) $>=\langle b$ b f>
- <(b) (d) (f) $>=<b$ d f $>$
- <(cf) (b)> = <(cf) b>

Seq./t	$\mathrm{t}=1$	$\mathrm{t}=2$	$\mathrm{t}=3$	$\mathrm{t}=4$	$\mathrm{t}=5$	$\mathrm{t}=6$
$\mathrm{~S}_{1}$	abc	b	de	af	b	ad
S_{2}	abc	bc	a	bcf		
S_{3}	bce	adf	e	abc	f	
S_{4}	acf	bd	abf	e		

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Search Space for sequential pattern mining

Sequential Pattern Mining Algorithms

- Apriori-based Algorithms (also named Generate \& Prune)
- Horizontal Data Format Algorithms
- GSP (hash tree)
- PSP (prefix tree - less memory)
- Vertical Data Format Algorithms
- SPADE
- SPAM
- LAPIN-SPAM
- Pattern Growth Algorithms
- FreeSpan
- PrefixSpan
- Extensions
- Closure
- CloSpan
- BIDE
- Gap-BIDE
- Clasp
- Episode Mining
- Minepi, Winepi
- Constraints
- SPIRIT
- SDMC

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential
II. PatternsMining sequential patterns with gap constraints
III. Episode mining (Winepi)

General Approach: generate/prune

- GSP (Generalized Sequential Pattern) mining algorithm
- [Agrawal and Srikant, EDBT’ 96]
- In the same vein as Apriori for frequent itemset mining
- GSP is a horizontal data format based SPM algorithm.

$\mathrm{N}=0$
While (Result ${ }_{N}$!= NULL) $\mathrm{N}=\mathrm{N}+1$
Generate candidates (Candidates ${ }_{\mathrm{N}}$) Prune candidates (Result ${ }_{\mathrm{N}}$)
Result = Result U Result ${ }_{N}$
Result is the whole set of sequential patterns
- Requirements:
- 2 kinds of extensions => to generate candidates
- the anti-monotony property => to prune candidates

2 kinds of extension

S-extension

Add an itemset to the sequence

$$
\text { Example: <(a,b)(c)> } \rightarrow<(a, b)(c)(d)>
$$

I-extension

Add an item into an existing itemset of the sequence

Example: <(a,b)(c)> $\rightarrow\langle(a, b)(c, d)\rangle$

Anti-monotony property

- Property:
- If a k-sequence is not frequent
- THEN all $(k+1)$ sequences which contain it are not frequent too.
- Example:
- IF $\sup (<(\mathrm{A}),(\mathrm{B}, \mathrm{C})>)<m i n s u p$
- THEN $\sup (<(\mathrm{A}),(\mathrm{B}, \mathrm{C}),(\mathrm{D})>) \ll \operatorname{minsup}$
- This property allows to adapt Apriori to extract
- Frequent sequential patterns
- (and thus temporal association rules)

GSP: based on Apriori

- Method in details
- generate frequent length-1 candidates from frequent items in $D B$: <A>,
- generate frequent length-2 candidates by self-joining 2 frequent length-1 patterns: <(A) (A)>, <(A) (B)>, <(A B)>
- for each level (i.e., sequences of length-k) do
- scan database to collect support count for each candidate sequence
- generate candidate length- $(\mathrm{k}+1)$ sequences from length-k frequent sequences using Apriori (self-join)
- repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori property (anti-monotonicity)
- Self-join $\mathbf{s}_{\mathbf{1}}$ et $\mathbf{s}_{\mathbf{2}}$:
- Remove first element of s 1 (s1-first $_{1} 1$) and last element of s 2 (s_{2}-last s_{2})
- If $\left(\mathrm{s}_{1}-\right.$ first $\left._{s 1}\right)=\left(\mathrm{s}_{2}-\right.$-last $\left._{\mathrm{s} 2}\right)$ then generate $\mathrm{s}_{1}+$ last $_{\mathrm{s} 2}$
- Examples

$$
\begin{array}{ll}
\langle(\mathrm{A} \mathrm{~B})(\mathrm{C})\rangle & \langle(\mathrm{A} \mathrm{~B})(\mathrm{C})\rangle \\
+\langle(\mathrm{B})(\mathrm{C} \mathrm{D})\rangle & +\langle(\mathrm{B})(\mathrm{C})(\mathrm{E})\rangle \\
\hline\langle(\mathrm{A} \mathrm{~B})(\mathrm{C} \mathrm{D})\rangle & \frac{\langle(\mathrm{A} \mathrm{~B})(\mathrm{C})(\mathrm{E})\rangle}{}
\end{array}
$$

Example (GSP)

- Sequence database
- 8 items
- 5 sequences
- (minsup=2)

Id_seq	Séquence
1	$<$ (bd) (c) (b) (ac)>
2	$<(\mathrm{bf})$ (ce) (b) (fg)>
3	$<$ (ah) (bf) (a) (b) (f)>
4	$<$ (be) (ce) (d)>
5	$<$ (a) (bd) (b) (c) (b) (ade)>

- Sequence database
- 8 items
- 5 sequences
- (minsup=2)

Id_seq	Séquence
1	$<(\mathrm{bd})$ (c) (b) (ac)> $>$
2	$<(\mathrm{bf})$ (ce) (b) (fg)>
3	$<$ (ah) (bf) (a) (b) (f)>
4	$<$ (be) (ce) (d)>
5	$<$ (a) (bd) (b) (c) (b) (ade)>

- $\mathrm{N}=1$
- Candidate generation
- Pruning unfrequent patterns
- 6 frequent sequences with 1 item

Candidate	Support
$<\mathrm{a}\rangle$	3
$<\mathrm{b}\rangle$	5
$<\mathrm{c}\rangle$	4
$<\mathrm{d}\rangle$	3
$<\mathrm{e}\rangle$	3
$<\mathrm{f}\rangle$	2
$\langle\mathrm{~g}\rangle$	
$\langle\mathrm{h}\rangle$	

Example (GSP)
S-extension

- $\mathrm{N}=2$
- Candidate generation
- 51 sequences with 2 items

I-extension

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	<a>		<c>	<d>	<e>	<f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c>				<(cd)>	<(ce)>	<(cf)>
<d>					<(de)>	<(df)>
<e>						<(ef)>
<f>						

Remark:

Without Apriori property, $8 * 8+8 * 7 / 2=92$ candidates

Apriori property prunes 44.57% candidates

The most time consuming step of GSP

- Computation of the candidate support
- Candidates stored in main memory
- It's important to limit the disk access
- Load the sequence database in memory when it's possible

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

- SPADE (Sequential Pattern Discovery using Equivalent classes)
- [Zaki, ML’01]
- SPADE is a SPM algorithm based on a vertical data format.

SID	Séquence
1	$<(\mathrm{bd}) \mathrm{c} \mathrm{b}(\mathrm{ac})>$
2	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
3	$<$ (ah) (bf) a b f>
4	$<$ (be) (ce) d>
5	<a (bd) b c b (ade)>

a		b		c		d		e		f		g		h	
SID	EID														
1	4	1	1	1	2	1	1	2	2	2	1	2	4	3	1
3	1	1	3	1	4	4	3	4	1	2	4				
3	3	2	1	2	2	5	2	4	2	3	2				
5	1	2	3	4	2		6	5	6	3	5				
5	6	3	2		4										
		3	4												
			1												
			2												
			3												
			5												

- Algorithm
- Scan DB and then transforms the database into the vertical format
- Filter non frequent 1 -sequences (count the number of $=/=$ SID)
- Example with minsup=4: Frequent 1-sequences: , <c>

- Algorithm

- Scan DB and then transforms the database into the vertical format
- Filter non frequent 1 -sequences (count the number of $=/=$ SID)
- Example with minsup=4: Frequent 1-sequences: , <c>
- Repeat until no more sequences can be generated
- Join k-sequences such that they share SID and the EIDs follow the sequential ordering
- Filter non frequent $(k+1)$-sequences (count the number of $=/=$ SID)
- To reduce space memory
- Join two k-sequences that have all subsequences in common except the last element (cf itemset => lexicographical improvement)
- store only one EID, the one of the last element
- lattice decomposition (class of sequences)
- A lot of irrelevant candidates are generated
- For instance, for 1000 frequent sequences with 1 item, the number of candidate sequences with 2 items is:
- $1000 \times 1000 \times(1000 \times 999) / 2=1499500$
- Several readings of the sequence database
- Beam search approach is memory-consuming
- To extract long sequences, that kind of approaches is not adapted
- Exponential number of candidate subsequences are generated
- E.g., for a 100 -sequence: $2^{100}-1 \approx 10^{30}$

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

- No candidate generation
- Frequent items are extracted from projected bases
- Greedy algorithm
- [Pei et al, ICDE'01]

General Idea: PrefixSpan (Pei et al. @ICDE' 01)

- Use frequent prefix to divide the search space and compute projected bases
- Look for only relevant sequences

Definition

- Definition: suffix

- Let $S=<11, \ldots, I n>$ be a sequence.
- Let $S^{\prime}=<l^{\prime} 1, \ldots$, l'm> be a subsequence of S.
- $S^{\prime \prime}=<J o, \ldots, J n>$ is a suffix of S w.r.t. S' if:
- <l1, ..., lo> is the smallest prefix that contains S'
- And all items from (Jo - l'm) are ordered after element of l'm in lo.
- Examples
- $S=<(a)(a b c)(a c)(d)(c f)>$
- Suffix(<a>) = <(abc) (ac) (d) (cf)>
- Suffix(<(a)(b)>) = <(c) (ac) (d) (cf)>

Projected base

Id_seq	Sequence
10	<a(abc)(ac)d(cf)>
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) c b>$
40	$<e g(a f) c b c>$

Prefix	Projection
<a>	$<(a b c)(a c) d(c f)>$
	$<\left(_d\right) c(b c)(a e)>$
	$<\left(_b\right)(d f) c b>$
	$<\left(_f\right) c b c>$

PrefixSpan (Pei et al. @ICDE’ 01)

- Informal algorithm

- Step 1:
- Extraction of frequent 1 -sequences
- Example: <a>, , <c>, <d>, <e>, <f>, <g>
- The set of sequential patterns is thus divided into 7 subsets
- Ones that start with <a>
- Ones that start with
- Ones that start with <c>
- Ones that start with <d>
- Ones that start with <e>
- Ones that start with <f>
- Ones that start with <g>
- Step 2:
- Computation of the projected base for each prefix
- Step 3:
- For each prefix, computation of candidates to be an extension.
- The frequent candidates are added and the extension becomes a new prefix.
- Go to Step 2
- End: No more prefix can be generated

Projected base

- Exercise

- minsup=4 (absolute support) equivalent to relative support 4/4=1 (100\%)
- Apply PrefixSpan on the following database

Id_seq	Sequence
10	<a(abc)(ac)d(cf)>
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) c c b>$
40	$<e g(a f) c b c>$

Projected base

- Exercise

Id_seq	Sequence
10	<a(abc)(ac)d(cf)>
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) c c b>$
40	$<e g(a f) c b c>$

- Step 1: frequent 1-sequences
- $\operatorname{Sup}(<a>)=4$
- $\operatorname{Sup}()=4$
- $\operatorname{Sup}(<c>)=4$
- $\operatorname{Sup}(\langle d\rangle)=3$
- $\operatorname{Sup}(\langle\theta\rangle)=3$
- Sup $(<f\rangle)=3$
- $\operatorname{Sup}(\langle g\rangle)=1$
- Step 2(1): Projected databases
- Prefix: <a>
- Prefix:
- Prefix: <c>

Id_seq	Projected DB
10	$<(a b c)(a c) d(c f)>$
20	$<\left(_d\right) c(b c)(a e)>$
30	$<\left(_b\right)(d f) c c b>$
40	$<\left(_f\right) c b c>$
Id_seq	Projected DB
10	$<\left(_c\right)(a c) d(c f)>$
20	$<\left(_c\right)(a e)>$
30	$<(d f) c c b>$
40	<c>

Id_seq	Projected DB
10	$<(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{bc})(\mathrm{ae})>$
30	<cb>
40	<bc>

- Step 3(1): item-extensions
- Prefix: <a>
- b
- c
- Prefix:
- \varnothing
- Prefix: <c>
- c

Id_seq	Projected DB
10	<(abc)(ac)d(cf)>
20	< (_d)c(bc)(ae)>
30	<(_b)(df)ccb>
40	<(_f)cbc>
Id_seq	Projected DB
10	<(_c)(ac)d(cf)>
20	< (_c)(ae)>
30	<(df)ccb>
40	<c>

Id_seq	Projected DB
10	$<(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{bc})(\mathrm{ae})>$
30	<cb>
40	<bc>

Projected base

- Step 2(2): projected database
- Prefix: <ab>
- Prefix: <ac>
- Prefix: <cc>

Id_seq	Projected DB
10	$<\left(_c\right)(a c) d(c f)>$
20	$<\left(_c\right)(a e)>$
30	$<>$
40	$<c>$

Id_seq	Projected DB
10	$<(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{bc})(\mathrm{ae})>$
30	<cb>
40	$<\mathrm{bc}>$

Id_seq	Projected DB
10	$<\mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ae})>$
30	
40	$<>$

Projected base

- Step 3(2): item-extensions
- Prefix: <ab>
- \varnothing
- Prefix: <ac>
- c
- Prefix: <cc>
- \varnothing

Id_seq	Projected DB
10	$<\left(_c\right)(a c) d(c f)>$
20	$<\left(_c\right)(a e)>$
30	$<>$
40	$<c>$

Id_seq	Projected DB
10	$<(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{bc})(\mathrm{ae})>$
30	<cb>
40	<bc>

Id_seq	Projected DB
10	$<\mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ae})>$
30	
40	$<>$

Projected base

- Step 2(3): projected database
- Prefix: <acc>

Id_seq	Projected DB
10	$\langle\mathrm{~d}(\mathrm{cf})>$
20	$<(\mathrm{ae})>$
30	
40	$<>$

Projected base

- Step 2(3): projected database
- Prefix: <acc>
- \varnothing

Id_seq	Projected DB
10	$<\mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ae})>$
30	$<\mathrm{b}>$
40	$<>$

- END
- Result
- <a>, , <c>
- <a b>, <a c>, <c c>
- <a C C>

Advantages of PrefixSpan

- No candidate generation
- The projected sequence database is smaller at each step
- The most consuming step
- Projected database building
- Improvement thanks to pseudo-projections

Pseudo Projection

- Instead of copy sequence database at each step, use
- pointers on the sequence
- and offset to identify the suffix

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Closed and Maximal Sequential Patterns

- Definition
- A sequential pattern s is closed over a set of patterns S
- Iff $\nexists s^{\prime} \in S, s \subseteq s^{\prime} \quad$ (or $\left.\forall s^{\prime} \in S, s \nsubseteq s^{\prime}\right)$
- s.t. $\sup (\mathrm{s})=$ sup(s')
- Definition
- A sequential pattern s is maximal over a set of patterns S
- Iff $\nexists s^{\prime} \in S, s \subseteq s^{\prime} \quad$ (or $\forall s^{\prime} \in S, s \nsubseteq s^{\prime}$)
- Example
- Let us consider the following set of sequences

Pattern	Support	Maximal ?	Closed ?
$<$ (ab) (c) (e)>	2		
$<$ (a) (c) (d)>	4		
$<$ (a) (c) (e) $>$	3		
$<$ (c) (d) (e) $>$	5		
$<$ (a) (c) $>$	4		
$<$ (b)>	7		

Closed and Maximal Sequential Patterns

- How to compute those patterns?
- As postprocessing
- With specific algorithms (e.g., CloSpan, BIDE)

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Mining sequential patterns with gap constraints

How to take into account gap constraints ?

- Approach 1:
- Mine sequential patterns without gap constraints
- Postprocess the discovered patterns
- Approach 2:
- Modify GSP to directly prune candidates that violate gap constraints
- Question:
- Does Apriori principle (anti-monotonicity) still hold?

Mining sequential patterns with gap constraints

- Does Apriori principle (anti-monotonicity) still hold?

Seq. ID	Sequence
10	$<(\operatorname{abd})(\mathrm{bc})(\underline{\mathrm{e}})>$
20	$<(\mathrm{ab})(\mathrm{bcd})>$
30	$<(\mathrm{ab})(\mathrm{bcd})(\mathrm{bde})>$
40	$<(\underline{\mathrm{b}})(\mathrm{c})(\mathrm{d})(\mathrm{de})>$
50	$<(\mathrm{ac})(\mathrm{bde})>$

```
Suppose:
    maxgap=1
    minsup = 50%
<(b) (e)> support = 40% (10, 30)
    but
<(b) (c) (e)> support = 60% (10, 30, 40)
```

Problem exists because of maxgap constraint
No such problem if maxgap is infinite

Mining sequential patterns with gap constraints

Contiguous subsequences

- Definition: contiguous
- s is a contiguous subsequence of $w=<e 1><e 2>\ldots<e k>$
- if any of the following conditions hold:
- $\quad s$ is obtained from w by deleting an item from either e1 or ek
- $\quad s$ is obtained from w by deleting an item from any element e_{i} that contains at least 2 items
- $\quad s$ is a contiguous subsequence of s' and s^{\prime} is a contiguous subsequence of w (recursive definition)
- Example:
- $s=<(a)(b)>$
- is a contiguous subsequence of

$$
<(\mathbf{a})(\mathrm{b} \text { c)>, < (a b) (b) (c)>, and < (c d) }(\mathbf{a} \text { b) }(\mathrm{b} \text { c) }(\mathrm{d})>
$$

- is not a contiguous subsequence of

$$
<\text { (a) (c) (b)> and < (b) (a b) (c) (b)> }
$$

Mining sequential patterns with gap constraints

Contiguous subsequences [Gap-Bide]

- Modified Candidate Pruning Step
- Without maxgap constraint:
- A candidate k-sequence is pruned
- if at least one of its $(k-1)$-subsequences is infrequent
- With maxgap constraint:
- A candidate k-sequence is pruned
- if at least one of its contiguous $(k-1)$-subsequences is infrequent

For candidate <(b) (c) (e)>

Check 2 contigous 2-subsequences:

- <(b) (c)>
- <(c) (e)>

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

Episode Mining

Episode mining
 =

analysing sequences of events to discover recurrent episodes
[Mannila et al. DMKD'97]

Episode Mining

- Event sequence
- Alarms in telecommunication network

- User interface actions

- Occurrences of recurrent illnesses

- Event sequence
- Example: human trace (1) "

- Event types
- $R=\{A=$ ‘eat', $B=‘ w o r k ’, C=‘ p r e p a r e ~ c o f f e e ’, ~ D=‘ w a k e ~ u p ’\} ~$
- Occurrence times
- integer $\rightarrow 10$... 150
- Event: pair (E, t)
- E: event type
- t: occurrence time
- Example: $(\mathrm{A}, 30)$
- Sequence on R: $S=\left(s, T_{s}, T_{e}\right)$
- Example:
- $s=<(D, 10),(C, 20), \ldots,(A, 150)>$
- starting time: $\mathrm{T}_{\mathrm{s}}=10$
- ending time: $\mathrm{T}_{\mathrm{e}}=150$
- A time slot may contain 0,1 or several events

Episode Mining

Episode

- Informally, an episode is a partially ordered collection of events occurring together
- $\mathrm{E}=(\mathrm{V}, \leq)$
- V : collection of event types
- \leq : partial order

Occurences

- Episode E occurs in a sequence S
- if it's possible to match event types of E on events of S
- so that the partial order \leq is respected

Partial orders

- Total order: serial episode

Note: We mostly consider the discovery of serial and parallel episodes

WINEPI: sliding window

- The name of the WINEPI method comes from the technique it uses: a sliding window
- Sliding window
- A window is slided through the event-based data sequence
- Each window "snapshot" is like a row in a database
- The collection of these "snapshots" forms the rows in the database

Window width: 40 s

- last point excluded

First (last) window contains first (last) point:

- 11 possible windows on the example

\mathbf{N}°	Sequence
1	D
2	DC
3	DCA
4	DCAB
5	CABD
6	ABDA
7	BDAB
8	DABC
9	ABC
10	BC
11	C

WINEPI: frequency

- The frequency/support of an episode α is
- «the fraction of windows in which the episode occurs»
- defined as $\operatorname{fr}(\alpha, S, w)=\frac{\mid\left\{S_{w} \in W(S, w) \mid \alpha \text { occurs in } S_{w}\right\} \mid}{|W(S, w)|}$
- w : window width
- Where $W(S, w)$ is the set of all windows of S w.r.t w
- An episode is frequent if
- $\operatorname{fr}(\boldsymbol{\alpha}, \mathrm{S}, \mathrm{w}) \geq \boldsymbol{m i n} _f r e q$ (threshold)
- Anti-monotonicity
- if episode α is frequent then all subepisodes $\beta \subseteq \alpha$ are frequent.

WINEPI algorithm

- Input:
- A set R of event types,
- an event sequence s over R,
- a set E of episodes, // parall or serial
- a window width win,
- and a frequency threshold min_fr
- Output:
- The collection of frequent episodes: $\mathrm{F}(\mathrm{s}$, win, min_fr)

1. compute $\mathrm{C}_{1} \leftarrow\{\alpha \in \mathrm{E}| | \alpha \mid=1\}$;
2. $i=1$;
3. while $C_{i} \neq \varnothing$ do

Test of frequency
4. // Database pass
compute $\mathrm{F}_{\mathrm{i}}(\mathrm{s}$, win, min_fr $) \leftarrow\left\{\alpha \in \mathrm{C}_{i} \mid\right.$ fr $(\alpha, \mathrm{s}$, win $) \geq$ min_fr $\} ;$
5. $i \leftarrow i+1$;
6. // Candidate generation
compute $\mathrm{C}_{i} \leftarrow \quad\left\{\alpha \in \mathrm{E}| | \alpha \mid=\mathrm{i}\right.$, and $\forall \beta \in \mathrm{E}$ s.t. $\beta \subseteq \alpha$ and $\beta \in \mathrm{F}_{|\beta|}(\mathrm{s}$, win, min_fr) $\}$;
7. for all i do ouptut $F_{i}(s$, win, min_fr)

WINEPI algorithm: generation of candidate episodes

- Example: find all parallel episodes with frequency > 40 \% (present in at least 5 windows)
- Create singletons, i.e., parallel episodes of size 1
- A, B, C, D
- Select the frequent singletons
- here all are
- From those frequent episodes, build candidate episodes of size 2
- AB, AC, AD, BC, BD, CD
- Select the frequent parallel episodes of size 2
- here all are
- From those frequent episodes, build candidate episodes of size 3
- $A B C, A B D, A C D, B C D$
- Select the frequent episodes of size 3
- only ABD occurs in more than four windows
- There are no candidate episodes of size four

\mathbf{N}°	Sequence
1	D
2	DC
3	DCA
4	DCAB
5	CABD
6	ABDA
7	BDAB
8	DABC
9	ABC
10	BC
11	C

- [Mannila et al. DMKD'97]
- Alternative approach to discover episodes
- No sliding windows
- For each potentially interesting episode, find out the exact occurrences
- Minepi is based of the notion of minimal occurrences
- Formally, given a episode α and an event sequence S, the interval $\left[\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}\right.$] is a minimal occurrence α of S ,
- If α occurs in the window corresponding to the interval
- And If α does not occur in any proper subinterval
- The set of minimal occurrences of an episode α in a given event sequence is denoted by $\mathrm{mo}(\alpha)$:
- $\operatorname{mo}(\alpha)=\left\{\left[\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}\right] \mid\left[\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}\right]\right.$ is a minimal occurrence of $\left.\alpha\right\}$
- Example
- β consisting of event types A and B has three minimal occurrences in s: $\operatorname{mo}(\beta)=\{[30,40],[40,60],[60,70]\}$
- Note: ([30,70] is not minimal)
- α has one occurrence in $\mathrm{s}: \operatorname{mo}(\alpha)=\{[60,80]\}$

Minepi

- Task: Find all serial episodes
- Using maximum time bound of 40 secs
- min_fr=1
- Create singletons, i.e., episodes of size 1
- (A, B, C, D)
- Create an occurrence table
- will use inverse tables
- A: 30, 60 ; B: 40,70 ; C: 20,80 ; D: 10,50
- Recognize the frequent singletons
- here all are
- From frequent episodes of size 1 build candidate episodes of size 2
- AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC
- Use the inverse table to create minimal occurrences for the candidates
- $\mathrm{Mo}(\mathrm{AB})=\{[30,40],[60,70]\}$
- Read the first occurrence of A (30-30), and find the first following B (40-40)
- Read the second occurrence of $A(60-60)$, and find the first following $B(70-70)$
- Continue with BA, AC etc
- Recognize the frequent episodes of size 2
- here almost are
- From frequent episodes of size 2 build candidate episodes of size 3
- And so on

Table of Contents

Sequential Pattern Mining

I. Introduction: what are we looking for
II. Definitions
I. Vocabulary
II. Sequence database
III. Frequent sequential patterns
IV. Problem definition
V. Discussion about time parameters
III. Sequence mining algorithms
I. Search space
II. Apriori based approaches (Generate \& Prune)
I. GSP
II. SPADE
III. Pattern growth Approach
I. PrefixSpan
IV. To go further
I. Closed and Maximal Sequential Patterns
II. Mining sequential patterns with gap constraints
III. Episode mining (Winepi)

