References

» [1] Davide Mottin, Anton Tstitsulin’s lectures (2017) — Hasso Plattner Institute
 [2] Slides of Francesco Bariatti (04/01/2021)

INSTITUT NATIONAL

‘ DES SCIENCES
APPLIQUEES
RENNES

Graph Mining

Peggy Cellier — peggy.cellier@insa-rennes.fr

Département Informatique

(last revision: october 2024)

17/10/2024 ‘ ‘ ‘ ‘ INSA Rennes

mailto:peggy.cellier@insa-rennes.fr

Motivation

 Huge quantity of graph data available
Physical networks (telco,...)

Social networks

Molecules

Program call graph

Semantic web

* Interest to discover subgraph patterns in this data

Plan

* Graph definition and problem statement

« Support and frequent graph patterns

« Algorithms
« Pattern-merging algorithms (Apriori-based, BFS)
« Pattern-growth algorithms (gSpan, etc)

17/10/2024 INSA Rennes

Graph

4)
Graph definition G = (V,E) EC V/xV
Set of vertices Set of edges
,

Several kinds of graphs

* Undirected graph: edges (u,v) and (v,u) are the same

« Labeled graph G=(V,E,I): labeling function | associating labels to vertices and edges

» Directed graphs

Example

» Undirected labeled graph with 7 vertices and 8 edges

Remarks

« Most graph mining approaches focus on undirected labeled graphs
» Graphs are sometimes called networks depending on the domain

Look at those graphs

* Do you think they have common parts?

Grath Graph H

* Graphs can appear different but actually have the same structure

Graph isomorphism

* Graph isomorphism:
* Recognizing if two graphs are the same

* Graph Isomorphism

» Let us consider
. G1=(V1,E1,1)
« G2=(V2,E2,12)
« G1is isomorphic to G2 iff it exists a bijection function f: V1 -> V2 such that:
« xv1eV => [1(v1)=12(f(v1)) /| same label
« (vi,ul)eE1 => (f(v1),f(u1)) € E2 // adjacent

An isomorphism
h hH
’ Graph G Grap between G and H

fia) =1
fib) =6
flc)=8
fid) =3
fig)=5
fih) =2
fl)=4
f)=7

 Examples

Source: https://en.wikipedia.org/wiki/Graph_isomorphism

Subgraph isomorphism 8

« Subgraph isomorphism:
» Recognizing if a graph is a part of another graph

« Subgraph isomorphic
» Let us consider two graphs: G2 and G1
* G1is subgraph isomorphic to G2 if there exists G’ s.t.
» G’ is isomorphic to G1
» G’is a subgraph of G2
 More formally: G1 G2
 G1=(V1,E1,I1) is subgraph isomorphic to G2=(V2,E2,12) if
there exists an injective function f: V1 ->V2 s.t.:
ve =(u,v) e E1 (f(u),f(v)) € E2
vv € V1 12(f(v)) = 11(v)
ve=(u,v)e E1 12((f(u),f(v))) = 11((u,v))

 Remark: Subgraph isomorphism search is NP-complete!
» In practice if labels are diverse enough, it can be computed in reasonnable time.

Graph Pattern Mining

« Graph Mining is essentially the problem of discovering frequent subgraphs
(patterns) occurring in the input data graph(s).

* Motivation
» Find structures describing interesting concepts in the data

» Abstract parts of the data as instances of patterns

» Learn about the data by looking at what is frequent in it

« Example of subgraphs
« Graph dataset

N] :
o O e

(A)

« Example of frequent patterns

Graph Mining

(B)

10

Plan

* Graph definition and problem statement

« Support and frequent graph patterns

« Algorithms
« Pattern-merging algorithms (Apriori-based, BFS)
« Pattern-growth algorithms (gSpan, etc)

17/10/2024 INSA Rennes

11

What is frequent?

* Discovering frequent subgraphs = discovering subgraphs with support > minsup

» Support definition depends on the kind of graph data
« Basic idea similar to other pattern mining domains
* « How often is the pattern found in the input data? »

« Two families of graph data

* Graph collection: a (generally large) set of (small) graphs
« E.g. molecules, sentences

« Single graph: the data is a unique (generally large) graph
« E.g. semantic web, social networks, DNA

12

What is frequent in a graph collection?

Support definition

» Let D be a graph collection and P a graph pattern

€D |P is a subgraph isomorphic to
. Support(P) = [{g€D | g |§| P g3l

Remark

» Each graph of the collection can only contribute once to the support, even if it has multiple
occrurrences of the pattern

Example ® ® ® ® onangnn
o @ o o e o o O
O O O O
G1 G2 G3 G4

Support is anti-monotonic
» The support of a graph is lower or equal to support of its subgraphs

13

o @

What is frequent in a graph collection?

« Exercise: Compute the support of those patterns

Patterns:

X a Y z X
b
Data: b b 3
a X

X Y

X a Y
X a Y

@—O® :
X

Z b Y
e
Y a X
Z
ai jb
Y c Y

Support: Support: Support:

What is frequent in a single graph?

* Naive solution
« Count how many occurrences the pattern has in the graph

Data:

Naive Naive Naive
support: 3 support: 6 support: 7

Naive support is not anti-monotonic

15

What is frequent in a single graph?

« Overlap-based approaches [Kuramochi and Karypis, 2004]
« Compute overlap graph of pattern embeddings

Data:

16

em: >IN Overworee

Possible MIS:
Overlap support: 2

. /
. B ,
. . 3 .
. R4 . ’
. . . e
. L. \ .
i . \ .
L " .
. .
. \ .
PR \ L.
Se. .- ~ . .
-~ .- N (Rt
hRE < et
.......... .~ — PELagRY
Sel el et .
L v
s T \
. '
. v
. |
.
s \
. '
'
'
H

What is frequent in a single graph?

« Overlap-based approaches [Kuramochi and Karypis, 2004]
« Example: construction of the overlap graph

Connected because

they overlap
(Return of the jedi) @ @

17

What is frequent in a single graph?

« Overlap-based approaches [Kuramochi and Karypis, 2004]
« Compute overlap graph of pattern embeddings

» Support is the size of MIS (Maximum Independant Set) of overlap graph
* i.e. maximum number of non-overlapping embeddings of the patterns

Data:

» Overlap-based support is anti-monotonic

18

* MIS computation is NP-complete Pattern: - e Overlap graph:

Possible MIS:
Overlap support: 2

. .
. . D A
. e B .
D . . K
. . \ .
S . \ B
N " L
~ \ .
PR \ L.
N .- ~ . .
. e .~ s e
hRE < et
........... .~ — PEIAa
Sel el et .
e L [
o T \
. .
. v
. |
0
. \
. '
i
'
'

What is frequent in a single graph?

 Minimum image based support [Bringmann and Nijssen, 2008]
» Let D be a single graph and P a graph pattern

« Support(P) = min,e," |[{e(v) | € is an embedding of P in D }|

&

8

4

]

9

B & 3 7

2 6 6 4

1

8 9

1

Pattern Embeddings
ABCD

= 3 different values
= 3 different values
= 3 different values
= 3 different values

= Support =3

19

What is frequent in a single graph? 20

 Minimum image based support [Bringmann and Nijssen, 2008]

» Let D be a single graph and P a graph pattern
« Support(P) = min,e," |[{e(v) | € is an embedding of P in D }|

Data:

Vertex 3 data vertices 6 data vertices ? data ? data
occurrences: vertices vertices
Support: 3 6 2

« Minimum image based support is anti-monotonic
* And it does not need to compute a NP-complete problem

Plan

* Graph definition and problem statement

« Support and frequent graph patterns

« Algorithms
- Pattern-merging algorithms (Apriori-based, BFS)
« Pattern-growth algorithms (gSpan, etc)

17/10/2024 INSA Rennes

21

Pattern-merging algorithms

- Based on the property:
* If the support measure is anti-monotonic
* For a k-pattern to be frequent
* All (k-1)-patterns contained in the k-pattern must be frequent.

* Work simirlaly to Apriori

Q Given Ly the set of k-size frequent patterns

© Merge compatible k-size patterns to create Ci. 1 the set of candidate
(k+1)-size patterns

o Compatible k-size patterns: patterns that have a common (k-1)-size core (i.e.

differ in only one element)
@ Prune Ci1: only retain patterns whose all (k-1)-size elements are frequent

© Create Ly, 1 by computing support of all patterns in Cy, 1
o If Ly = 0, stop

22

Pattern-merging algorithms

« Main pattern-merging graph mining algorithms
« AGM/AcGM [Inokuchi et al., 2000]
« FSG [Kuramochi and Karypis, 2001]
* FFSM [Huan, et al., 2003] and SPIN [Huan et al., 04]
« DPMine [Gudes et al., 2006]

« Main differences is the definition of a k-pattern
» Kvertices

 Kedges
« K edge-disjoint paths

23

FSG: k-subgraph

* Notation: k-subgraph is a subgraph with k edges

?-subgraph ?-subgraph ?-subgraph

24

FSG 25

* Init:
» Scan the transactions to find F4;

* F, = set of all frequent 1-subgraphs and 2-subgraphs, together with their
counts

For (k=3; Fy.1 # O ; k++)
1. Candidate Generation — C,, the set of candidate k-subgraphs, from
F..1, the set of frequent (k-7)-subgraphs;

2. Candidates pruning - a necessary condition of candidate to be
frequent is that each of its (k-1)-subgraphs is frequent.

3. Frequency counting - Scan the graph database to count the
occurrences of subgraphs in Cy;

4. F,={c € Cx |c has counts = min_sup}

Return T1 U TQ U...... U Tk (= T)

Pattern-merging algorithms: Simple operations?

« Candidate generation

+ To determine two candidates for joining, we need to check for graph isomorphism.

« Candidate pruning
» To check downward closure property, we need graph isomorphism.

* Frequency counting
« Subgraph isomorphism for checking containment of a frequent subgraph.

Recall that subgraph isomorphism is NP-complete!!!

26

Plan

* Graph definition and problem statement

« Support and frequent graph patterns

« Algorithms
« Pattern-merging algorithms (Apriori-based, BFS)
- Pattern-growth algorithms (gSpan, etc)

17/10/2024 INSA Rennes

27

Pattern growth approach 28

« Solve drawbacks of pattern-merging algorithms

« Expand frequent patterns by looking at possible frequent extensions of their embeddings
» No need to merge patterns => avoid subgraph-isomorphism check => time gain

Generate patterns

» No need to store all k-patterns to generate (k+1)-patterns => memory gain expanding existing ones (gz)-graph
« Only generate frequent patterns => avoid testing non-frequent candidates => time gain (ke) g”’%o —
@\ 0
* Most algorithms in this family use depth-first search to generate patterns kg”"/
» Often called DFS algorithms \\ 0
o —— © "

b
a a
Support: 3/3
a \‘A ey S ¢
b Tl
b
Support: 2/3

 Given a database

« Example of first steps

Example

T2

T3

lec\{1,3} TID={1,2,3} TID={1,2,3}

TID={1,3}

TID={1,3}

ﬁ'é\
1%

0 0
1 1
2 2

S~ —

TID={1,2,3}

%

=

—_— =

29

Pattern-growth algorithms

* Most cited pattern-growth algorithms [Worlein et al., 2005]
» MoFa [Borgelt and Berthold, 2002]
» Developed to find substructures in collection of molecules
» Least efficient of the four because it generates many times the same patterns

* gSpan [Yan and Han, 2002]
» The most cited
 Introduces techniques to avoid generating multiple times the same patterns
+ Canonical labeling
* Depth First Search (DFS) with rightmost path expansion

« FFSM [Wang et al., 2003]
» Uses both pattern expansion and a special efficient join operation

» Gaston [Nijssen and Kok, 2005]
» Works in phases to avoid subgraph isomorphism as much as possible
+ Starts with simple patterns (paths), used to mine slightly more complex patterns (trees) then graphs
» The fastest of the four

30

Canonical codes

X Y X Y

extend/merge
W 2 W Isomorphic!

(i.e. same pattern)

: previous .
, extensions/merges.-”

previous .
 extensions/merges.-”

w X W X
: extend/merge > :
Y VA

Different search paths may lead to the same pattern

Y

How to avoid exploring multiple times the same patterns?
* Have a generation strategy that limits duplicates
« E.g., always expand from the latest expanded vertex (Mofa, gSpan, ...)
» Does not suffice by itself (cf example above)

» Detect if a pattern can be found following another search path

» Naive approach: compare with all generated patterns => not possible in reasonnable time and
memory

« Canonical codes (gSpan, FFSM, Gaston)

31

Canonical Codes

* |ldea

« Map each graph (2-dimensions) to a code (1-dimension) such that if two graphs have equal
codes they are isomorphic

 Make code comparable
 The minimum possible code for a graph is called the canonical code of the graph.
« Same canonical code < isomorphic graphs
« Canonical code uniquely identifies a graph

* In the generation
* Only extend patterns on search paths that yield the canonical code for the pattern

Note: The maximum code could be used instead of the minimal, it’s arbitrary.

32

gSpan Canonical Code (DFS code)

 Code based on DFS construction of the graph (called DFS code)

« Each edge e=(u,v) added to the graph is represented by a code element
* (uyl(u), I(e), I(v))

(0,1,X,3a,Y)
(1,2,Y, b, X)
(2,0,X, a, X)
(2,3,X,¢c2)
(3,1,2,b,Y)
(1,4,Y,d, 2)

Single graph — several DFS-codes

(@)

(b)

0, 1, Y, a, X)

(1, 2,, b, X)

(11 2/ XI al X)

(ll 2’ XI al Y)

34

(2,0,%X a,X) [(2,0,%b,Y)[(20,Yb,X)
(21 3’ XI CI Z) (2, 3/ XI CI Z) (21 3’ Yl bl Z)
V,
C®“\d Vy
G,1,ZbY) [(302ZbY)[3E0,2¢cX Tal
i Vi b
(1,4,Y,d,2) [(0,4,Y,d,2) [(24,Y,d2) L vac

(b) ()

« Same graph can have different DFS codes depending on starting vertices
* Order defined on codes

» Lexicographic order of code elements
« When a pattern is generated during DFS search, decide if it could have a smaller DFS

code
* Yes => do not extend
* No => extend the DFS branch where it has a minimal code

Single graph — single Min DFS-code

Min
DFS-Code
(a) (b) (c)
(0,1,X%, a,Y) (0,1,Y, a, X) 0,1, X, a, xi D)
(1,2,Y, b, X) (1,2, X% a, X) (1,2,X,4a,Y)

(2,0,X, a, X)

(2,0,X,b,Y)

(2,0,Y, b, X)

(2,3,X%,¢,2)

(2,3,X%,¢,2)

(2,3,Y,b,2)

(3I 1I ZI bl Y)

(3I OI ZI bl Y)

(3I Ol ZI cl x)

(1,4,Y,d,2)

(0,4,Y,d, 2)

(2,4,Y,d,2)

35

o

[o)]

Data:

[¢)]

DFS Pruning with Canonical Codes 36

Pt

"""""""

.-
PR
e

D
Minimal code (1,2,X,b,X) Minimal code (1,2,X,a,Y)
v V --------- > T I T e >
b a [.]
a a . - b
Minimal code Minimal code
(1,2,X,a,Y) (1,2,X,a,Y)
Non-frequent (1,3,X,b,X) (2,3,Y,b,2)
Non-minimal code Qeememmm T RN i
(1,2,X,b,X) (1,3,X,a,Y) b
Stop! b ; |
P
a a a > v
b [...]

Non-frequent Non-frequent

Conclusion 37

Graphs are a generic data structure that allows to express a large quantity of
structured data

However, graphs more complexe than itemsets or sequences
« Pattern matching is a NP-complete subgraph isomorphism problem
« Support computation
« Similarity between two graphs

Graph mining approaches are constructed on the same basis as itemset mining
(Apriori, pattern-growth) but need additional concepts to avoid too much
complexity (e.g., canonical codes)

In pattern mining

« The more generic the pattern/data language, the more it allows for expressiveness
« But the more the pattern mining tends to be difficult

