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How to manage the amount of Patterns? 3

Condensed 
representations

Examples
• Closed patterns 

[Pasquier+’99]
• Maximal patterns

Constraints Measures of 
interest Pattern sets

Examples
• Length of the patterns
• Regular expressions 

[Garofalakis+’99]

Examples [Geng+’06]
• Support
• Confidence
• Growth rate

Examples
• Tiles [Geerts+’04]
• Compression-based 

[Vreeken+’11]
• Swap randomization 

[Lijffijt+’12]
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Question 6

How can we find useful patterns?



Standard pattern mining

For a database db
• a pattern language L 
• and a set of constraints C

the goal is to find the set of patterns P ⊆ L such that
• each p ∊ P satisfies each c ∊ C on db
• and P is maximal 
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That is, find all patterns that satisfy the constraints



Problems in pattern paradise

The pattern explosion problem
• ⇧ high thresholds
⇩ few, but well-known patterns 

• ⇩ low thresholds
⇧ a gazillion patterns 

Many patterns are redundant 

8Problems in pattern paradise
The pattern explosion
� high thresholds

few, but well-known patterns
� low thresholds

a gazillion patterns

Many patterns are redundant

Unstable
� small data change,

yet different results
� even when distribution

did not really change
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Illustration: the Wine explosion

• The Wine dataset has 178 rows, 14 columns
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Be careful what you wish for

The root of all evil is, 
• we ask for all patterns

that satisfy some constraints, 

• while we want a small set 
   that shows the structure of the data 

In other words, we should ask for a set of patterns such that 
• all members of the set satisfy the constraints 
• the set is optimal with regard to some criterion 

10

What we ask for

What we really want

vs



What we ask for 11

A pattern identifies local properties of the data (e.g., itemsets)



What we really want 12
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How to do that?

How to find 
• a subset of patterns
• describing data in a concise way
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The Minimum Description Length (MDL) Principle 
[Risanen’78, Grünwald’00]

Models describe the data
• that is, they capture regularities
• hence, in an abstract way, they compress it 

The MDL principle makes this observation concrete:

``The model that best describes the data 
is the one that best compresses the data.’’

29



The Minimum Description Length (MDL) Principle 
[Risanen’78, Grünwald’00]
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How to compress data? 
⇒ take advantage of repetitions (patterns)

D = a b c c a b c d a b c

D =          c          d           

Replace the pattern a b c  by a short (in number of bits) code

Model (M)
pattern code

a
b
c

c

d

Pattern appearing 3X => shorter code

Patterns appearing 1X => longer code

D|M =                              D encoded with M



The Minimum Description Length (MDL) Principle 
[Risanen’78, Grünwald’00]
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How to find the BEST compression? 
⇒ trade-off

Model M’

D encoded with M’

pattern code

a 
b 
c 
c 
a 
b 
c 
d 
a 
b 
c

D|M’ = 

Model M

D encoded with M

pattern code

a
b
c

c

d

D|M = 

1 big pattern

1 short code

Model M’’

D encoded with 
M’’

Pattern  code

a

b

c

d

D|M’’ = 

1 pattern per item



The Minimum Description Length (MDL) Principle 
[Risanen’78, Grünwald’00]
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How to find the BEST compression? 
⇒ trade-off

Principle: Find a trade-off by minimizing

L(D,M) = L(M) + L(D|M)

Description length of 
the model

Description length of 
the data encoded with the model



Information theory and compression

The MDL principle is related to Kolmogorov Complexity

Kolmogorov Complexity [Kolmogorov 1963]
the complexity of a string is the length of the smallest program 
  that generates the string, and then halts 

Kolmogorov Complexity is the ultimate compression
• recognizes and exploits any structure
• Uncomputable however…

20



Outline

1. Introduction
2. Compression based approaches

1. Motivations
2. Information theory and the MDL principle

• Information theory
• The MDL principle for pattern mining

3. Algorithms
• Itemsets: Krimp (and SLIM)
• Sequences: SQS
• Graphs: Graph-MDL

• Conclusion

21



The MDL principle for pattern mining

• Goal: reduce the number of extracted patterns

• Existing approaches for several pattern languages [Galbrun’22]

• Examples
• Itemsets: KRIMP [Vreeken+’11], SLIM [Smets+’12]
• Sequences: SQS [Tatti+’12]
• Graphs: GraphMDL [Bariatti+’20], GraphMDL+ [Bariatti+’21]
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Model = Code Table

• Code Table (CT)
• Set of itemsets + encoding

23

Model

(Vreeken et al 2011 / Siebes et al 2006)
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Encoding a database: example 24
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Encoding a database: example 26
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Encoding a database: example 27
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Encoding a database: exercise

• Exercise: 
• Let us consider the following database and code table 
• Find the cover of the transactions 
• and the updated usages of the code table

28

23

Encoding a database
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Solution 29



Standard Code Table

• ST: Standard Code table
• = only and all singleton itemsets

• Example

30

Krimp : mining itemsets that compress

Cover with ST

A

CBA

B

CBA

CBA

CBA

CBA

BA

Standard code table ST
Usage

A

5

7

B 7

Itemset Code

C

Encoded with ST

Fig. 3 Example standard code table for the database in Fig. 2, with associated cover and encoded database

2006). (Confusingly, such codes are also known as prefix-free codes (Li and Vitányi
1993).)

Example 3 Figure 3 shows how the cover of a database can be translated into an
encoded database: replace each itemset in the cover by its associated code.

Since MDL is concerned with the best compression, the codes in CT should be
chosen such that the most often used code has the shortest length. That is, we should
use an optimal prefix code. Note that in MDL we are never interested in materialised
codes, but only in the complexities of the model and the data. Therefore, we are only
interested in the lengths of the codes of itemsets X ∈ CT . As there exists a nice corre-
spondence between code lengths and probability distributions (see e.g. Li and Vitányi
1993), we can calculate the optimal code lengths through the Shannon entropy. So, to
determine the complexities we do not have to operate an actual prefix coding scheme
such as Shannon-Fano or Huffman encoding.

Theorem 1 Let P be a distribution on some finite set D, there exists an optimal prefix
code C on D such that the length of the code for d ∈ D, denoted by L(d) is given by

L(d) = − log(P(d)).

Moreover, this code is optimal in the sense that it gives the smallest expected code
size for data sets drawn according to P. (For the proof, please refer Theorem 5.4.1 in
Cover and Thomas 2006)

The optimality property means that we introduce no bias using this code length.
The probability distribution induced by a cover function is, of course, simply given by
the relative usage frequency of each of the item sets in the code table. To determine
this, we need to know how often a certain code is used. We define the usage count
of an itemset X ∈ CT as the number of transactions t from D where X is used to
cover. Normalised, this frequency represents the probability that that code is used in
the encoding of an arbitrary t ∈ D. The optimal code length (Li and Vitányi 1993)
then is − log of this probability, and a code table is optimal if all its codes have their
optimal length. Note that we use fractional lengths, not integer-valued lengths of ma-
terialised codes. This ensures that the length of a code accurately represents its usage
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B

A

Database Encoded databaseCover with CT

A

B

A B C

A B

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B

Fig. 2 Example database, and the cover and encoded database obtained by using the code table shown in
Fig. 1. I = {A, B, C}

t . The parameters are a code table CT and a transaction t , the result is a disjoint set of
elements of CT that cover t . Or, more formally, a cover function is defined as follows.

Definition 2 Let D be a database over a set of items I, t a transaction drawn from
D, let CT be the set of all possible code tables over I, and CT a code table with
CT ∈ CT . Then, cover : CT × P(I) #→ P(P(I)) is a cover function iff it returns a
set of itemsets such that

1. cover(CT , t) is a subset of C S, the coding set of CT , i.e. X ∈ cover(CT , t) →
X ∈ CT

2. if X, Y ∈ cover(CT , t), then either X = Y or X ∩ Y = ∅
3. the union of all X ∈ cover(CT , t) equals t , i.e.

t = ⋃
X∈cover(CT ,t) X

We say that cover(CT , t) covers t . Note that there exists at least one well-defined
cover function on any code table CT over I and any transaction t ∈ P(I), since CT
contains at least the singleton itemsets from I.

By not allowing itemsets in the cover of a transaction to overlap, we ensure that it
is always unambiguous what the cover of a transaction is. If we would allow overlap,
it can easily happen that multiple covers are possible and computing and testing all of
them would be a computational burden.

Example 2 In Fig. 2, an example database is shown. This database will be used as
running example from now on. It consists of 8 itemsets, of which five are identical.
Also shown is the cover of this database with example code table CT (see Fig. 1). In
this example, each transaction is covered by only a single itemset from the code table.

To encode a database D using code table CT we simply replace each transaction
t ∈ D by the codes of the itemsets in the cover of t ,

t → {codeCT (X) | X ∈ cover(CT , t)}.

Note that to ensure that we can decode an encoded database uniquely we assume that
C is a prefix code, in which no code is the prefix of another code (Cover and Thomas

123

Example from paper [1]



Optimal codes [Shannon 1948, Thomas & Cover 1991]

• What is the actual length of the codes? (in bits)

• For c∈CT we define

• 𝑃 𝑐 𝐶𝑇 = !"#$%(')
∑!∈	$% !"#$%(*)	

where 𝑢𝑠𝑎𝑔𝑒 𝑗 = | 𝑡 ∈ 	𝐷	 𝑗	𝑖𝑛	𝑐𝑜𝑣𝑒𝑟 𝑡, 𝐶𝑇 }|

• Example: P({A,C}) = 3/13

• The optimal code for the coding 
distribution P assigns a code to c∈CT 
with length: [Shannon 1948]

• 𝐿 𝑐 𝐶𝑇 = − log𝑃(𝑐|𝐶𝑇)

• Example: L({A,C}) = -log(3/13) ≈ 2.12
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Encoding a database
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Encoding a code table

The size of a code table depends on 
• the left column 

• length of itemsets as encoded with independence model 
• ST depends only from the data → used to measure CT size

• the right column 
• the optimal code length based on usage of code table elements

Thus, the size of a code table is 

32
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Encoding a database
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𝐿 𝐶𝑇	 𝐷) = )
!∈	$%:'()*+ ! ,-

𝐿 𝑐 𝑆𝑇 + 𝐿(𝑐|𝐶𝑇)



Encoding a database

For t ∈ D we have

Hence we have  

33

𝐿 𝑡 𝐶𝑇 = 	 )
?∈?@ABC(D,EF)	

𝐿(𝑐|𝐶𝑇)

𝐿 𝐷 𝐶𝑇 = 	)
D∈G	

𝐿(𝑡|𝐶𝑇)

Sum of the DL of all transactions of D

Description length (DL) for one transaction of D



The Total Size

The total size of data and code table is 

• This is the MDL measure that we want to minimize

34

𝐿 𝐷, 𝐶𝑇 = 𝐿 𝐶𝑇 𝐷 + 𝐿 𝐷 𝐶𝑇

Description length of 
the model

Description length of 
the data

encoded with the model



And now, the optimal code table…

• Easier said than done
• The number of possible code tables is huge
• No useful structure to exploit

• Hence, we resort to heuristics

35
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KRIMP

• KRIMP
• Based on MDL
• And heuristics 

37

Krimp : mining itemsets that compress

present code table element with the same length. Together, this means that we can
insert a candidate itemset at the right position in the code table in O(1) if we store the
code table elements in an array (over itemset length) of lists.

4.4 The Krimp algorithm

We now have the ingredients for the basic version of our compression algorithm:

– Start with the standard code table ST ;
– Add the candidate itemsets from F one by one. Each time, take the itemset that is

maximal w.r.t. the standard candidate order. Cover the database using the standard
cover algorithm. If the resulting encoding provides a smaller compressed size, keep
it. Otherwise, discard it permanently.

This basic scheme is formalised as the Krimp algorithm given as Algorithm 3. For
the choice of the name: ‘krimp’ is Dutch for ‘to shrink’. The Krimp pattern selection
process is illustrated in Fig. 4.

Krimp takes as input a database D and a candidate set F . The result is the best code
table the algorithm has seen, w.r.t. the Minimal Coding Set Problem.

Now, it may seem that each iteration of Krimp can only lessen the usage of an
itemset in CT . For, if F1 ∩ F2 ̸= ∅ and F2 is used before F1 by the standard cover
function, the usage of F1 will go down (provided the support of F2 does not equal

Algorithm 3 The Krimp Algorithm
Input: A transaction database D and a candidate set F , both over a set of items I
Output: A heuristic solution to the Minimal Coding Set Problem, code table CT
1: CT ← Standard Code Table(D)
2: Fo ← F in Standard Candidate Order
3: for all F ∈ Fo \ I do
4: CTc ← (CT ∪ F) in Standard Cover Order
5: if L(D, CTc) < L(D, CT) then
6: CT ← CTc
7: end if
8: end for
9: return CT

Code table

Many many patterns

Database

code table

add to
code table

accept /
reject  

select pattern

compress database

code table

Fig. 4 Krimp in action
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Krimp : mining itemsets that compress

present code table element with the same length. Together, this means that we can
insert a candidate itemset at the right position in the code table in O(1) if we store the
code table elements in an array (over itemset length) of lists.

4.4 The Krimp algorithm

We now have the ingredients for the basic version of our compression algorithm:

– Start with the standard code table ST ;
– Add the candidate itemsets from F one by one. Each time, take the itemset that is

maximal w.r.t. the standard candidate order. Cover the database using the standard
cover algorithm. If the resulting encoding provides a smaller compressed size, keep
it. Otherwise, discard it permanently.

This basic scheme is formalised as the Krimp algorithm given as Algorithm 3. For
the choice of the name: ‘krimp’ is Dutch for ‘to shrink’. The Krimp pattern selection
process is illustrated in Fig. 4.

Krimp takes as input a database D and a candidate set F . The result is the best code
table the algorithm has seen, w.r.t. the Minimal Coding Set Problem.

Now, it may seem that each iteration of Krimp can only lessen the usage of an
itemset in CT . For, if F1 ∩ F2 ̸= ∅ and F2 is used before F1 by the standard cover
function, the usage of F1 will go down (provided the support of F2 does not equal

Algorithm 3 The Krimp Algorithm
Input: A transaction database D and a candidate set F , both over a set of items I
Output: A heuristic solution to the Minimal Coding Set Problem, code table CT
1: CT ← Standard Code Table(D)
2: Fo ← F in Standard Candidate Order
3: for all F ∈ Fo \ I do
4: CTc ← (CT ∪ F) in Standard Cover Order
5: if L(D, CTc) < L(D, CT) then
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8: end for
9: return CT

Code table

Many many patterns
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select pattern

compress database

code table

Fig. 4 Krimp in action
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suppD(X)↓  |X|↓  Lexicographically↑ 

|X|↓   suppD(X)↓ Lexicographically↑ 
Add the candidate one by one



Improvement by Pruning

• Example
• Let us consider 3 code tables

• And assume that sup({X1,X2,X3}) = sup({X1,X2}) -1
• KRIMP will never consider CT3
• But it is possible that L(D,CT3) < L(D, CT2)

• => Problem: CT3 will not be considered

• Solution: pruning in the code table that KRIMP is considering

39
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zero). While this is true, it is not the whole story. Because, what happens if we now
add an itemset F3, which is used before F2 such that:

F1 ∩ F3 = ∅ and F2 ∩ F3 ̸= ∅

The usage of F2 will go down, while the usage of F1 will go up again; by the same
amount, actually. So, taking this into consideration, even code table elements with
zero usage cannot be removed without consequence. However, since they are not used
in the actual encoding, they are not taken into account while calculating the total
compressed size for the current solution.

In the end, itemsets with zero usage can be safely removed though. After all, they
do not code, so they are not part of the optimal answer that should consist of the
smallest coding set. Since the singletons are required in a code table by definition,
these remain.

4.5 Pruning

That said, we cannot be sure that leaving itemsets with a very low usage count in CT
is the best way to go. As these have a very small probability, their respective codes
will be very long. Such long codes may make better code tables unreachable for the
greedy algorithm; it may get stuck in a local optimum. As an example, consider the
following three code tables:

CT1 = {{X1, X2}, {X1}, {X2}, {X3}}
CT2 = {{X1, X2, X3}, {X1, X2}, {X1}, {X2}, {X3}}
CT3 = {{X1, X2, X3}, {X1}, {X2}, {X3}}

Assume that suppD({X1, X2, X3}) = suppD({X1, X2})− 1. Given these assump-
tions, standard Krimp will never consider CT3, but it is very well possible that
L(D, CT3) < L(D, CT2) and that CT3 provides access to a branch of the search
space that is otherwise left unvisited. To allow for searching in this direction, we can
prune the code table that Krimp is considering.

There are many possibilities to this end. The most obvious strategy is to check the
attained compression of all valid subsets of CT including the candidate itemset F , i.e.
{CTp ⊆ CT | F ∈ CTp ∧ I ⊂ CTp}, and choose CTp with minimal L(D, CTp). In
other words, prune when a candidate itemset is added to CT , but before the acceptance
decision. Clearly, such a pre-acceptance pruning approach implies a huge amount of
extra computation. Since we are after a fast and well-performing heuristic we do not
consider this strategy.

A more efficient alternative is post-acceptance pruning. That is, we only prune
when F is accepted: when candidate code table CTc = CT ∪ F is better than CT , i.e.
L(D, CTc) < L(D, CT), we consider its valid subsets. This effectively reduces the
pruning search space, as only few candidate itemsets will be accepted.

To cut the pruning search space further, we do not consider all valid sub-
sets of CT , but iteratively consider for removal those itemsets X∈CT for which
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Improvement by Pruning

• When pruning?
• When an itemset F is added to the code table
• At line 6 of KRIMP Algorithm

• Which itemsets have to be tested?
• Only ones for which the usage has decreased
• Because their code length has increased

40
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Algorithm 4 Code Table Post-Acceptance Pruning
Input: Code tables CTc and CT , for a transaction database D over a set of items I, where {X ∈ CT} ⊂

{Y ∈ CTc} and L(D, CTc) < L(D, CT).
Output: Pruned code table CTp, such that L(D, CTp) ≤ L(D, CTc) and CTp ⊆ CTc.
1: PruneSet← {X ∈ CT | usageCTc (X) < usageCT (X)}
2: while PruneSet ̸= ∅ do
3: PruneCand ← X ∈ PruneSet with lowest usageCTc (X)
4: PruneSet← PruneSet \ PruneCand
5: CTp ← CTc \ PruneCand
6: if L(D, CTp) < L(D, CTc) then
7: PruneSet← PruneSet ∪ {X ∈ CTp | usageCTp (X) < usageCTc (X)}
8: CTc ← CTp
9: end if
10: end while
11: return CTc

usageD(X) has decreased. The rationale is that for these itemsets we know that their
code lengths have increased; therefore, it is possible that these sets now harm the
compression.

In line with the standard order philosophy, we first consider the itemset with the
smallest usage and thus the longest code. If by pruning an itemset the total encoded
size decreases, we permanently remove it from the code table. Further, we then update
the list of prune candidates with those item sets whose usage consequently decreased.
This post-acceptance pruning strategy is formalised in Algorithm 4. We refer to the
version of Krimp that employs this pruning strategy (which would be on line 6 of
Algorithm 3) as Krimp with pruning. In Sect. 7 we will show that employing pruning
improves the performance of Krimp .

Example 6 Two example code tables obtained with Krimp are shown in Fig. 5. With-
out pruning, Krimp selects 2 itemsets of length > 1 to encode the database. The size of
the database encoded with this code table is 12.4 bits. The total encoded size, including
the size of the code table, is 33 bits. When pruning is enabled, {A, B} is pruned from
the code table. It was accepted into the code table earlier than {A, B, C}, but does
no longer contribute to compression now that this larger set has been added. With
the pruned code table, the size of the encoded database is 12.9 bits. However, since
the code table is smaller, the total encoded size becomes 26 bits; 7 bits smaller than
without pruning.

4.6 Complexity

Here we analyse the complexity of the Krimp algorithms step–by–step. We start with
time-complexity, after which we cover memory-complexity.

Given a set of (frequent) itemsets F , we first order this set, requiring O(|F | log |F |)
time. Then, every element F ∈ F is considered once. Using a hash-table implemen-
tation we need only O(1) to insert an element at the right position in CT , keeping CT
ordered. To calculate the total encoded size L(D, CT), the cover function is applied
to each t ∈ D. For this, the standard cover function considers each X ∈ CT once for a
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Only itemsets with decreased usage

usage↓  = code length↑ 

Compare the length of D without the itemset



KRIMP 41KRIMP
� mine candidates from 𝐷𝐷

� iterate over candidates
J Standard Candidate Order

� covers data greedily
J no overlap
J Standard Code Table Order

� select by MDL
J better compression? 

candidates may stay,
reconsider old elements

(Vreeken et al 2011)
33



So, are KRIMP code tables good?

At first glance, yes
• the code tables are characteristic in the MDL-sense 

• they compress well

• the code tables are small 
• they consist of few patterns

• the code tables are specific 
• they contain relatively long itemsets 

But, are these patterns useful? 
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The proof of the pudding

The quality of the KRIMP code tables was tested by

• classification (ECML PKDD’06)
• measuring dissimilarity (KDD’07, ECML PKDD’15)
• generating data (ICDM’07)
• concept-drift detection (ECML PKDD’08)
• estimating missing values (ICDM’08)
• clustering (ECML PKDD’09)
• sub-space clustering (CIKM’09)
• anomaly detection (SDM’11, CIKM’12, SDM’17)
• characterising uncertain 0-1 data (SDM’11)
• tag-recommendation (IDA’12) 
• Web semantic (Semantic Web’20)
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Example: How to use KRIMP for Classification

• The Krimp classifier
• Split database on class
• Find code tables
• Classify by compression

44

KRIMP for Classification
The KRIMP Classifier
� split database on class
� find code tables
� classify by compression

The Goal
� validation of KRIMP

The Results
� expected ‘ok’
� on par with top classifiers

41
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SLIM

• Any-time version of KRIMP
• Generate-and-select instead of generate-then-select
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SLIM algorithm 47

Algorithm 2 The Slim Algorithm

Input: A transaction database D over a set of items I
Output: A heuristic solution to the Minimal Coding

Set Problem, code table CT
1. CT  Standard Code Table(D)
2. for F 2 {X [ Y : X,Y 2 CT} in Gain Order do

3. CTc  (CT � F ) in Standard Cover Order

4. if L(D, CTc) < L(D, CT ) then
5. CT  post-prune(CTc)
6. end if

7. end for

8. return CT

(3), cover the data, and compute total encoded size (4).
If compression improves, we accept the candidate, oth-
erwise reject it. If accepted, we reconsider every element
in CT to whether it still contributes towards compres-
sion (5), and update the candidate list (2). We continue
considering pairwise combinations of X,Y 2 CT to re-
fine the current code table until no candidate decreases
the total compressed size, after which we are done.

Note that, if desired, extra constraints on individual
candidates (e.g. a minimum support, or length) can be
checked when constructing the candidate list, or before
adding them to the code table at line 3.

In practice, we do not need to materialise all
candidates on line 2. Instead, we traverse CT ordered
on usage, employing branch-and-bound to find theX[Y
with highest estimated gain; as we traverse the elements
descending on usage, we do not need to consider any
element V or W with lower usage than the current best
candidate X [ Y . Moreover, suppose X is considered
before Y . Therefore usage(Y )  usage(X), and we can
first bound using usage(X [ Y ) = usage(X). Second,
we can bound using usage(X [ Y ) = usage(Y ). Then,
if this bound is met, we need to calculate the expected
usage usage(X [Y ) by intersecting the usage lists of X
and Y . Moreover, to speed up computation, we store
the top-k best estimates, allowing us to quickly suggest
the next-best candidate when a candidate is rejected.

Slim is well-suited for any-time computation, as
it iteratively refines the current code table. As
such, it allows for interactive data analysis and time-
budgeted computation, providing good intermediate re-
sults. Given a result, Slim can simply continue refining.

Next, we analyse the complexity of Slim. Consid-
ering the candidates (line 2) maximally takes O(|CT |2)
steps. A code table for D could contain all |F| item-
sets occurring in D. At worst, we re-evaluate each
candidate |F| times. The complexity of steps 3–6 is
O(|F| ⇥ |D| ⇥ |I|). Together, the worst-case time-
complexity is O(|F|3 ⇥ |D| ⇥ |I|). We will see in the

experiments this estimate is quite pessimistic; in prac-
tice, code tables are small (ranging from 10s to 1000s)
and Slim evaluates 2 orders-of-magnitude fewer candi-
dates than all |F| itemsets occurring in D.

Regarding memory complexity we can be brief. As
we need to store a code table of maximally |F| itemsets,
and the database D, memory complexity is O(|F|+|D|).

5 Related Work

Since the seminal paper by Agrawal and Srikant [1] on
frequent pattern mining, a lot of research is aimed at
reducing the pattern explosion; mining the most inter-
esting and useful patterns in manageable amounts. The
traditional approach is to mine concise representations
for collections of patterns, either lossless, such as non-
derivable [3] itemsets, or lossy, as for self-su�cient item-
sets [26] and probabilistic summaries [27]. This is dif-
ferent from our approach in that we summarise data,
instead of pattern collections.

Webb argues [25] not to condense set of mined pat-
terns, but to rank patterns according to their statisti-
cal significance, and let the end-user consider the top-k.
However, as patterns are considered individually, redun-
dancy among significant patterns remains.

Considering patterns as binary features on rows,
Knobbe and Ho [7], and Bringmann and Zimmer-
mann [2], resp. exhaustively and heuristically select
those groups of patterns by which data rows are par-
titioned optimally, using an external criterion such as
joint-entropy or accuracy. Unlike Slim, both post-
process materialised collections of candidate patterns,
and partition the data instead of summarising it.

Tilings [5] are sets of itemsets that together e�-
ciently cover the data, and are hence strongly related
to SetCover. Although tilings can be mined directly
from data, as area is not (anti-)monotonic with set in-
clusion, e�ciency is an issue. Related, Kontonasios and
De Bie [8] propose a two-phase approach to select the
most informative noisy tiles from a collection of fault-
tolerant itemsets, using MDL and a maximum entropy
data model. Both methods require a number of patterns
to select, as well as a minimum area threshold.

Slim is strongly related to the Krimp algo-
rithm [22]. Both aim at finding the set of itemsets that
together describe the data best. Krimp code tables have
been shown to capture data distributions very well, and
have been used successfully for a wide range of data min-
ing tasks [21, 9, 22]. Krimp post-processes a candidate
collection, filtering it in a static order. By iteratively
considering the current data description, Slim avoids
redundant patterns, explores a larger search space, does
not mine and sort huge numbers of candidates, and does
not require a minimal support threshold.

|X|↓   suppD(X)↓ Lexicographically↑ 

usage↓

Note: At line 2 a list of the top-k candidates is kept 
 in case the selected candidate fails the test at line 4



SLIM: example (with simplifications)

• Let us assume 
• A set of items I={A, B, C, D}
• And a database D

• Apply 2 steps of the loop of SLIM on D
• For a sake of simplicity 

• No postpruning
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transactions description

T1 A  B  C

T2 B  C  D

T3 A  B 

T4 B  C  

T5 B      D

Memo

-log2(5/12) = 1.26

-log2(3/12) = 2

-log2(2/12) = 2.58

-log2(3/9)=1.58

-log2(2/9) = 2.16

-log2(1/9) = 3.16

Memo:
Length(t) = -log2(       usage(t)      )
               Ʃy∈CT usage(y)



Solution (to complete)

• 1. Computation of the standard code table 
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pattern support usage usage list length code

CT = ST =



Solution (to complete)

• 2.1 Selection of a candidate F as the union of 2 elements of 
CT

• 3.1 Computation of the new CTc
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Solution (to complete)

• 4.1 L(D,CTc) < L(D, CT) ?
• L(D | CTc) =  Assume : L(CTc | D) = 18.26 

• L(D | CT) =   Assume : L(CT | D) = 15.16
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Solution (to complete)

• 2.2 Selection of a candidate F as the union of 2 elements of 
CT

• 3.1 Computation of the new CTc
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Solution (to complete)

• 4.1 L(D,CTc) < L(D, CT) ?
• L(D | CTc) =   assume L(CTc | D) = 25.74 
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SLIM

• Characteristics
• Any-time algorithm

• It considers at each step the refinement of the CT that provides most 
gain

• Thanks to heuristics

• Parameter-free (no minsup)
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SQS

• SQS read « squeeze »

• MDL for sequences
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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MDL for event sequences

• Code table
• 4 columns

• Pattern, 
• code, 
• gap code, 
• no gap code

• Encoded database = 2 streams 
• Cp: pattern stream
• Cg: gap stream
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log
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usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log
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◆
,

L(coden(X) | CT ) = � log
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,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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coding uses only singletons. The second encoding uses single-
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)
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◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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coding uses only singletons. The second encoding uses single-
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
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◆
,

L(coden(X) | CT ) = � log
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◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .

464

Data D: a b d c a d b a a b c

Encoding 1: using only singletons
Cp a b d c a d b a a b c

Encoding 2: using patterns
Cp p d a q b p

Cg

alignment
a b d c a d b a a b c

p q p

gap gap

CT 1: a a

b b

c c

d d

CT 2: a a

b b

c c

d d

abc p

da q

ga
ps

no
n-g

ap
s

Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log
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usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Exercise

• Let us consider the following code table and the following 
streams

• Give the decoded sequence
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SQS

Encoding length
• Patterns

• Let
• gaps(X) = number of gaps in the usage of pattern X
• fills(X)    = number of non-gaps in the usage of pattern X

• Note: 

• Gaps

• Non-gaps
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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coding uses only singletons. The second encoding uses single-
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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Figure 1: Toy example of two possible encodings. The first en-
coding uses only singletons. The second encoding uses single-
tons and two patterns, namely, abc and da

calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .

Next, we encode the second column. To avoid bias, we treat the
singletons and non-singleton entries of CT differently. Let us write
P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
codes associated with each pattern in CT .
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calculate the lengths of these codes, as well as the encoded lengths
of the code table and database.

We start with L(codep(X)), the lengths of pattern codes in Cp,
which we can look up in the second column of CT . By Shannon
Entropy [3] we know that the length, in bits, of the optimal prefix-
free code for an event X is � log Pr(X), where Pr(X) is the
probability of X . Let us write usage(X) for how often codep(X)
occurs in Cp. That is, usage(X) = |{Y 2 Cp | Y = codep(X)}|.
Then, the probability of codep(X) in Cp is its relative occurrence
in Cp. So, we have

L(codep(X) | CT ) = � log

✓
usage(X)P

Y 2CT usage(Y )

◆
.

Similarly, the lengths of the codes for indicating the presence or
absence of a gap in the usage of a pattern X , resp. L(codeg(X))
and L(coden(X)), should be dependent on their relative frequency.
Let us write gaps(X) to refer to the number of gap events within
the usages of a pattern X in the cover of D. We then resp. have

fills(X) = usage(X)(|X|� 1) ,

for the number of non-gap codes in the usage of a pattern X , and

L(codeg(X) | CT ) = � log

✓
gaps(X)

gaps(X) + fills(X)

◆
,

L(coden(X) | CT ) = � log

✓
fills(X)

gaps(X) + fills(X)

◆
,

resp. for the length of a gap and a non-gap code of a pattern X .
We say a code table CT is code-optimal for a cover C of a

database D if all the codes in CT are of the length according to
their respective usage frequencies in Cp and Cg as defined above.

From the lengths of the individual codes, the encoded length of
the code streams now follows straightforwardly, with resp.

L(Cp | CT ) =
X

X2CT

usage(X)L(codep(X))

for the encoded size of the pattern-stream, and

L(Cg | CT ) =
X

X2CT
|X|>1

⇣
gaps(X)L(codeg(X))+

fills(X)L(coden(X))
⌘

for the encoded size of the gap-stream.

Combining the above, we define L(D | CT ), the encoded size
of a database D given a code table CT and a cover C , as

L(D | CT ) = LN(|D|) +
X

S2D

LN(|S|) +

L(Cp | CT ) + L(Cg | CT ) ,

where |D| is the number of sequences in D, and |S| is the length of
a sequence S 2 D. To encode these values, for which we have no
prior knowledge, we employ the MDL optimal Universal code for
integers [5, 15]. For this encoding, LN, the number of bits required
to encode an integer n � 1, is defined as

LN(n) = log⇤(n) + log(c0) ,

where log⇤ is defined as log⇤(n) = log(n) + log log(n) + · · · ,
where only the positive terms are included in the sum. To make LN
a valid encoding, c0 is chosen as c0 =

P
J�1 2

�LN(j) ⇡ 2.865064
such that the Kraft inequality is satisfied.

Next we discuss how to calculate L(CT ), the encoded size of
a code table CT . To ensure lossless compression, we need to
encode the number of entries, for which we employ LN as defined
above. For later use, and to avoid bias by large or small alphabets,
we encode the number of singletons, |⌦|, and the number of non-
singleton entries, |CT \ ⌦|, separately. We disregard any non-
singleton pattern with usage(X) = 0, as it is not used in describing
the data, and has no valid (or infinite length) pattern code.

For the size of the left-hand side column, note that the simplest
valid code table consists only of the single events. This code table
we refer to as the standard code table, or ST . We encode the
patterns in the left-hand side column using the pattern codes of ST .
This allows us to decode up to the names of events.

As singletons cannot have gaps, the usage of a singleton Y given
ST is simply the support of Y in D. Hence, the code length of
Y in ST is defined as L(codep(Y ) | ST ) = � log supp(Y |D)

||D|| .
Before we can use these codes, we must transmit these supports.
We transmit these using a data-to-model code [21], an index over
a canonically ordered enumeration of all possibilities; here, the
number of ways ||D|| events can be distributed over |⌦| labels,
where none of the bins may be empty, as supp(Y | D) > 0. The
number of such possibilities is given by

�||D||�1
|⌦|�1

�
, and by taking

a log we have the number of bits required to identify the right set
of values. Note that ||D|| is known from L(D | CT ). In general,
for the number of bits for an index of a number composition, the
number of combinations of summing to m with n non-zero terms,
we have LU (m,n) = log

�
m�1
n�1

�
, where for m = 0, and n = 0,

we define LU (m,n) = 0.
Combined, this gives us the information required to reconstruct

the left-hand side of CT for the singletons, as well as the infor-
mation needed to decode the non-singleton patterns of CT . For a
pattern X , the number of bits in the left-hand column is the length
of X , |X|, as encoded by LN, and the sum of the singleton codes

LN(|X|) +
X

xi2X

L(code(xi) | ST ) .
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P to refer to the non-singleton patterns in CT , i.e. P = CT \ ⌦.
For the elements of P , we first encode the sum of their usages,
denoted by usage(P), and use a data-to-model code like above to
identify the correct set of individual usages. With these values, and
the singleton supports we know from ST , we can reconstruct the
usages of the singletons in CT , and hence reconstruct the pattern
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This leaves us the gap-codes for the non-singleton entries of CT .
For reconstructing these, we need to know gaps(X), which we
encode using LN. The number of non-gaps then follows from the
length of a pattern X and its usage. As such, we can determine
codeg(X) and coden(X) exactly.

Putting this all together, we have L(CT | C , D), the encoded
size in bits of a code table CT for a cover C of a database D, as

L(CT | C ) =LN(|⌦|) + LU (||D||, |⌦|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
X

X2P

L(X,CT ) ,

where L(X,CT ), the number of bits for encoding the events, length,
and the number of gaps of patterns X in CT , is

L(X,CT )

= LN(|X|) + LN(gaps(X) + 1) +
X

x2X

L(codep(x | ST )) .

By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C ) + L(D | CT ) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let ⌦ be a set of events and let

D be a sequence database over ⌦, find the minimal set of serial

episodes P such that for the optimal cover C of D using P and

⌦, the total encoded cost L(CT , D) is minimal, where CT is the

code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in the Appendix1.

3.1 Minimal windows
Assume we are decoding a sequence Sk 2 D. Assume we

decode the beginning of a pattern X at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X 2 P as

A = {(i, j,X, k) | Sk[i, j] is an active window for X,Sk 2 D} .
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An alignment corresponding to the second encoding given in Fig-
ure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the cover of
the sequence, as it does not take into account how the intermediate
symbols (if any) within the active windows of a pattern X are
encoded. However, an alignment A for a sequence database D

does define an equivalence class over covers of the same encoded
length. In fact, given a sequence database D and an alignment A,
we can determine the number of bits our encoding scheme would
require for such a cover. To see this, let X be a pattern and let
W = {(i, j,X, k) 2 A}, then

usage(X) = |W | and gaps(X) = gaps(W ) , (1)

where

gaps(W ) =
X

(i,j,X,k)2W

j � i� |X|� 1 . (2)

The remaining symbols are encoded as singleton patterns. Hence,
the usage of a singleton is equal to

usage(s) = supp(s | D)�
X

s2X

usage(X) . (3)

Given an alignment A for D, we can trivially construct a valid
cover C for D, simply by following A and greedily covering Sk

with pattern symbols if possible, and singletons otherwise. That is,
if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.

Then, from either C , or directly from A, we can derive the as-
sociated code-optimal code table CT . Given an alignment A, let
us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
L(D,A) as shorthand for L(D,CT (A)).

Our next step is to show what kind of windows can occur in the
optimal alignment. We say that W = S[i, j] is a minimal window
of a pattern X if W contains X but no other proper sub-windows
of W contain X . For example, in Figure 1 S[6, 8] is a minimal
window for da but S[6, 9] is not.

PROPOSITION 1. Let A be an alignment producing an optimal

encoded length. Then all active windows in A are minimal windows.

Proposition 1 says that we need to only study minimal windows.
Let F be a set of episodes and let X 2 F . Since an event Sk[i]
can be a starting point to only one minimal window of X , there are
only kDk minimal windows of X in D, at most. Consequently, the
number of minimal windows we need to investigate is bounded by
kDk |F|. Moreover, we can use FINDWINDOWS in [20] to discover
all the minimal windows for a pattern X in O(|X| kDk) time.

3.2 Finding optimal alignment
Discovering an optimal alignment is non-trivial due to the com-

plex relation between code lengths and the alignment. However,
if we fix the alignment, Eqs. 1–3 give us the codes optimising
L(D | A). In this section we will show the converse, that if we fix
the codes, we can easily find the alignment optimising L(D | A).
In order to do that let w = (i, j,X, k) be a minimal window for a
pattern X . We define the gain to be

gain(w) =� L(codep(X))� (j � i� |X|)L(codeg(X))

� (|X|� 1)L(coden(X)) +
X

x2X

L(codep(x)) .
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This leaves us the gap-codes for the non-singleton entries of CT .
For reconstructing these, we need to know gaps(X), which we
encode using LN. The number of non-gaps then follows from the
length of a pattern X and its usage. As such, we can determine
codeg(X) and coden(X) exactly.

Putting this all together, we have L(CT | C , D), the encoded
size in bits of a code table CT for a cover C of a database D, as

L(CT | C ) =LN(|⌦|) + LU (||D||, |⌦|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
X

X2P

L(X,CT ) ,

where L(X,CT ), the number of bits for encoding the events, length,
and the number of gaps of patterns X in CT , is

L(X,CT )

= LN(|X|) + LN(gaps(X) + 1) +
X

x2X

L(codep(x | ST )) .

By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C ) + L(D | CT ) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let ⌦ be a set of events and let

D be a sequence database over ⌦, find the minimal set of serial

episodes P such that for the optimal cover C of D using P and

⌦, the total encoded cost L(CT , D) is minimal, where CT is the

code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in the Appendix1.

3.1 Minimal windows
Assume we are decoding a sequence Sk 2 D. Assume we

decode the beginning of a pattern X at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X 2 P as

A = {(i, j,X, k) | Sk[i, j] is an active window for X,Sk 2 D} .
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An alignment corresponding to the second encoding given in Fig-
ure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the cover of
the sequence, as it does not take into account how the intermediate
symbols (if any) within the active windows of a pattern X are
encoded. However, an alignment A for a sequence database D

does define an equivalence class over covers of the same encoded
length. In fact, given a sequence database D and an alignment A,
we can determine the number of bits our encoding scheme would
require for such a cover. To see this, let X be a pattern and let
W = {(i, j,X, k) 2 A}, then

usage(X) = |W | and gaps(X) = gaps(W ) , (1)

where

gaps(W ) =
X

(i,j,X,k)2W

j � i� |X|� 1 . (2)

The remaining symbols are encoded as singleton patterns. Hence,
the usage of a singleton is equal to

usage(s) = supp(s | D)�
X

s2X

usage(X) . (3)

Given an alignment A for D, we can trivially construct a valid
cover C for D, simply by following A and greedily covering Sk

with pattern symbols if possible, and singletons otherwise. That is,
if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.

Then, from either C , or directly from A, we can derive the as-
sociated code-optimal code table CT . Given an alignment A, let
us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
L(D,A) as shorthand for L(D,CT (A)).

Our next step is to show what kind of windows can occur in the
optimal alignment. We say that W = S[i, j] is a minimal window
of a pattern X if W contains X but no other proper sub-windows
of W contain X . For example, in Figure 1 S[6, 8] is a minimal
window for da but S[6, 9] is not.

PROPOSITION 1. Let A be an alignment producing an optimal

encoded length. Then all active windows in A are minimal windows.

Proposition 1 says that we need to only study minimal windows.
Let F be a set of episodes and let X 2 F . Since an event Sk[i]
can be a starting point to only one minimal window of X , there are
only kDk minimal windows of X in D, at most. Consequently, the
number of minimal windows we need to investigate is bounded by
kDk |F|. Moreover, we can use FINDWINDOWS in [20] to discover
all the minimal windows for a pattern X in O(|X| kDk) time.

3.2 Finding optimal alignment
Discovering an optimal alignment is non-trivial due to the com-

plex relation between code lengths and the alignment. However,
if we fix the alignment, Eqs. 1–3 give us the codes optimising
L(D | A). In this section we will show the converse, that if we fix
the codes, we can easily find the alignment optimising L(D | A).
In order to do that let w = (i, j,X, k) be a minimal window for a
pattern X . We define the gain to be

gain(w) =� L(codep(X))� (j � i� |X|)L(codeg(X))

� (|X|� 1)L(coden(X)) +
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This leaves us the gap-codes for the non-singleton entries of CT .
For reconstructing these, we need to know gaps(X), which we
encode using LN. The number of non-gaps then follows from the
length of a pattern X and its usage. As such, we can determine
codeg(X) and coden(X) exactly.

Putting this all together, we have L(CT | C , D), the encoded
size in bits of a code table CT for a cover C of a database D, as

L(CT | C ) =LN(|⌦|) + LU (||D||, |⌦|)+
LN(|P|+ 1) + LN(usage(P) + 1)+

LU (usage(P), |P|) +
X

X2P

L(X,CT ) ,

where L(X,CT ), the number of bits for encoding the events, length,
and the number of gaps of patterns X in CT , is

L(X,CT )

= LN(|X|) + LN(gaps(X) + 1) +
X

x2X

L(codep(x | ST )) .

By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C ) + L(D | CT ) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let ⌦ be a set of events and let

D be a sequence database over ⌦, find the minimal set of serial

episodes P such that for the optimal cover C of D using P and

⌦, the total encoded cost L(CT , D) is minimal, where CT is the

code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in the Appendix1.

3.1 Minimal windows
Assume we are decoding a sequence Sk 2 D. Assume we

decode the beginning of a pattern X at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X 2 P as

A = {(i, j,X, k) | Sk[i, j] is an active window for X,Sk 2 D} .
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An alignment corresponding to the second encoding given in Fig-
ure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the cover of
the sequence, as it does not take into account how the intermediate
symbols (if any) within the active windows of a pattern X are
encoded. However, an alignment A for a sequence database D

does define an equivalence class over covers of the same encoded
length. In fact, given a sequence database D and an alignment A,
we can determine the number of bits our encoding scheme would
require for such a cover. To see this, let X be a pattern and let
W = {(i, j,X, k) 2 A}, then

usage(X) = |W | and gaps(X) = gaps(W ) , (1)

where

gaps(W ) =
X

(i,j,X,k)2W

j � i� |X|� 1 . (2)

The remaining symbols are encoded as singleton patterns. Hence,
the usage of a singleton is equal to

usage(s) = supp(s | D)�
X

s2X

usage(X) . (3)

Given an alignment A for D, we can trivially construct a valid
cover C for D, simply by following A and greedily covering Sk

with pattern symbols if possible, and singletons otherwise. That is,
if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.

Then, from either C , or directly from A, we can derive the as-
sociated code-optimal code table CT . Given an alignment A, let
us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
L(D,A) as shorthand for L(D,CT (A)).

Our next step is to show what kind of windows can occur in the
optimal alignment. We say that W = S[i, j] is a minimal window
of a pattern X if W contains X but no other proper sub-windows
of W contain X . For example, in Figure 1 S[6, 8] is a minimal
window for da but S[6, 9] is not.

PROPOSITION 1. Let A be an alignment producing an optimal

encoded length. Then all active windows in A are minimal windows.

Proposition 1 says that we need to only study minimal windows.
Let F be a set of episodes and let X 2 F . Since an event Sk[i]
can be a starting point to only one minimal window of X , there are
only kDk minimal windows of X in D, at most. Consequently, the
number of minimal windows we need to investigate is bounded by
kDk |F|. Moreover, we can use FINDWINDOWS in [20] to discover
all the minimal windows for a pattern X in O(|X| kDk) time.

3.2 Finding optimal alignment
Discovering an optimal alignment is non-trivial due to the com-

plex relation between code lengths and the alignment. However,
if we fix the alignment, Eqs. 1–3 give us the codes optimising
L(D | A). In this section we will show the converse, that if we fix
the codes, we can easily find the alignment optimising L(D | A).
In order to do that let w = (i, j,X, k) be a minimal window for a
pattern X . We define the gain to be

gain(w) =� L(codep(X))� (j � i� |X|)L(codeg(X))
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This leaves us the gap-codes for the non-singleton entries of CT .
For reconstructing these, we need to know gaps(X), which we
encode using LN. The number of non-gaps then follows from the
length of a pattern X and its usage. As such, we can determine
codeg(X) and coden(X) exactly.

Putting this all together, we have L(CT | C , D), the encoded
size in bits of a code table CT for a cover C of a database D, as

L(CT | C ) =LN(|⌦|) + LU (||D||, |⌦|)+
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where L(X,CT ), the number of bits for encoding the events, length,
and the number of gaps of patterns X in CT , is

L(X,CT )

= LN(|X|) + LN(gaps(X) + 1) +
X

x2X

L(codep(x | ST )) .

By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C ) + L(D | CT ) .

More formally, we define the problem as follows.

Minimal Code Table Problem Let ⌦ be a set of events and let

D be a sequence database over ⌦, find the minimal set of serial

episodes P such that for the optimal cover C of D using P and

⌦, the total encoded cost L(CT , D) is minimal, where CT is the

code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in the Appendix1.

3.1 Minimal windows
Assume we are decoding a sequence Sk 2 D. Assume we

decode the beginning of a pattern X at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
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if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.
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us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
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of W contain X . For example, in Figure 1 S[6, 8] is a minimal
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can be a starting point to only one minimal window of X , there are
only kDk minimal windows of X in D, at most. Consequently, the
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This leaves us the gap-codes for the non-singleton entries of CT .
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codeg(X) and coden(X) exactly.
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By MDL, we can then define the optimal set of serial episodes
for a given sequence database as the set for which the optimal cover
and associated optimal code table minimises the total encoded size

L(CT , D) = L(CT | C ) + L(D | CT ) .
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⌦, the total encoded cost L(CT , D) is minimal, where CT is the

code-optimal code table for C .

Clearly, this problem entails a rather large search space. First of
all, given a set of patterns, there are many different ways to cover
a database. Second, there are very many sets of serial episodes P
we can consider, namely all possible subsets of the collection of
serial episodes that occur in D. However, neither the full problem,
or these sub-problems, exhibit trivial structure that we can exploit
for fast search, e.g. (weak) monotonicity.

We hence break the Minimal Code Table Problem into two sub-
problems. First, in the next section we discuss how to optimise the
cover of a sequence given a set of episodes. Then, in Section 4, we
will discuss how to mine high quality code tables.

3. COVERING A STRING
Encoding, or covering, a sequence is more difficult than decoding

one. The reason is simple: when decoding there is no ambiguity,
while when encoding there are many choices, i.e. what pattern to
encode a symbol with. In other words, given a set of episodes, there
are many valid ways to cover a sequence, where by our problem
definition we are after the cover C that minimises L(CT , D).

Due to lack of space, we provide the proofs in the Appendix1.

3.1 Minimal windows
Assume we are decoding a sequence Sk 2 D. Assume we

decode the beginning of a pattern X at Sk[i] and that the last symbol
belonging to this instance of X is, say, Sk[j]. We say that Sk[i, j] is
an active window for X . Let P be the set of non-singleton patterns
used by the encoding. We define an alignment A to be the set of all
active windows for all non-singleton patterns X 2 P as

A = {(i, j,X, k) | Sk[i, j] is an active window for X,Sk 2 D} .

1http://adrem.ua.ac.be/sqs/

An alignment corresponding to the second encoding given in Fig-
ure 1 is {(1, 4, abc, 1), (6, 8, da, 1), (9, 11, abc, 1)}.

Note that an alignment A does not uniquely define the cover of
the sequence, as it does not take into account how the intermediate
symbols (if any) within the active windows of a pattern X are
encoded. However, an alignment A for a sequence database D

does define an equivalence class over covers of the same encoded
length. In fact, given a sequence database D and an alignment A,
we can determine the number of bits our encoding scheme would
require for such a cover. To see this, let X be a pattern and let
W = {(i, j,X, k) 2 A}, then

usage(X) = |W | and gaps(X) = gaps(W ) , (1)

where

gaps(W ) =
X

(i,j,X,k)2W

j � i� |X|� 1 . (2)

The remaining symbols are encoded as singleton patterns. Hence,
the usage of a singleton is equal to

usage(s) = supp(s | D)�
X

s2X

usage(X) . (3)

Given an alignment A for D, we can trivially construct a valid
cover C for D, simply by following A and greedily covering Sk

with pattern symbols if possible, and singletons otherwise. That is,
if for a symbol Sk[i] we have, by A, the choice for covering it as a
gap or non-gap of a pattern X , we choose non-gap.

Then, from either C , or directly from A, we can derive the as-
sociated code-optimal code table CT . Given an alignment A, let
us write CT (A) for this code table. Wherever clear from context,
we will write L(D | A) to mean L(D | CT (A)), and similarly
L(D,A) as shorthand for L(D,CT (A)).

Our next step is to show what kind of windows can occur in the
optimal alignment. We say that W = S[i, j] is a minimal window
of a pattern X if W contains X but no other proper sub-windows
of W contain X . For example, in Figure 1 S[6, 8] is a minimal
window for da but S[6, 9] is not.

PROPOSITION 1. Let A be an alignment producing an optimal

encoded length. Then all active windows in A are minimal windows.

Proposition 1 says that we need to only study minimal windows.
Let F be a set of episodes and let X 2 F . Since an event Sk[i]
can be a starting point to only one minimal window of X , there are
only kDk minimal windows of X in D, at most. Consequently, the
number of minimal windows we need to investigate is bounded by
kDk |F|. Moreover, we can use FINDWINDOWS in [20] to discover
all the minimal windows for a pattern X in O(|X| kDk) time.

3.2 Finding optimal alignment
Discovering an optimal alignment is non-trivial due to the com-

plex relation between code lengths and the alignment. However,
if we fix the alignment, Eqs. 1–3 give us the codes optimising
L(D | A). In this section we will show the converse, that if we fix
the codes, we can easily find the alignment optimising L(D | A).
In order to do that let w = (i, j,X, k) be a minimal window for a
pattern X . We define the gain to be

gain(w) =� L(codep(X))� (j � i� |X|)L(codeg(X))

� (|X|� 1)L(coden(X)) +
X

x2X

L(codep(x)) .
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PROPOSITION 2. Let D be a dataset and A be an alignment.

Then the length of encoding D is equal to

L(D | A) = const �
X

w2A

gain(w) ,

where const does not depend on A.

This proposition suggests that if we fix the code lengths we need
to maximise the total gain. In order for an alignment to be valid, the
windows must be disjoint. Hence, given a set of W , consisting of
all minimal windows of the given patterns, we need to find a subset
O ✓W of disjoint windows maximising the gain.

Assume that W is ordered by the first index of each window.
For a window w, define next(w) to be the next disjoint window
in W . Let o(w) be the optimal total gain of w and its subsequent
windows. Let v be the next window of w, then the optimal total
gain is o(w) = min(o(v), gain(w) + o(next(w)). This gives us a
simple dynamic program, ALIGN, given as Algorithm 1.

Algorithm 1: ALIGN(W )

input :minimal windows W sorted by the first event
output :mutually disjoint subset of W having the optimal gain

1 o(N + 1) 0; opt(N + 1) none;
2 foreach i = N, . . . , 1 do
3 c 0;
4 if next(i) then c o(next(i));
5 if gain(wi) + c > o(i+ 1) then
6 o(i) gain(wi) + c; opt(i) i;
7 else
8 o(i) o(i+ 1); opt(i) opt(i+ 1);

9 O  optimal alignment (obtained by iterating opt and next);
10 return O;

We can now use ALIGN iteratively. Given the codes we find the
optimal alignment and derive the optimal codes given the new align-
ment. We repeat this until convergence, which gives us a heuristic
approximation to the optimal alignment A⇤ for D using patterns P .
As initial values, we use the number of minimal windows as usage
and set gap code length to be 1 bit. The pseudo code of SQS, which
stands for Summarising event seQuenceS, is given as Algorithm 2.

Algorithm 2: SQS(D,P). Summarising event seQuenceS
input :Database of sequences D, set of patterns P
output :Alignment A

1 foreach s 2 ⌦ do usage(s) supp(s | D);
2 foreach X 2 P, |X| > 1 do
3 WX  FINDWINDOWS(X,D);
4 usage(X) |WX |; gaps(X) |X|� 1;
5 W  merge sort {WX}X2F based on first event;
6 while changes do
7 compute gain for each w 2W ;
8 A ALIGN(W );
9 recompute usage and gaps from A (Eqs. 1–3);

10 return A;

The computational complexity of single iteration comes down to
the computational complexity of ALIGN(W ), which is O(|W |) ✓
O(|P| kDk). Also note that next is precomputed before calling
ALIGN and this can be also computed with a single scan, taking

O(|W |) steps. Note that the encoded length improves at every
iteration, and as there are only finite number of alignments, SQS will
converge to a local optimum in finite time. In practice, the number
of iterations is small—in the experiments typically less than 10.

4. MINING CODE TABLES
With the above, we both know how to score the quality of a

pattern set, as well as how to heuristically optimise the alignment of
a pattern set. This leaves us with the problem of finding good sets
of patterns. In this section we give two algorithms to do so.

4.1 Filtering Candidates
Our first algorithm, SQS-CANDIDATES, assumes that we have a

(large) set of candidate patterns F . In practice, we assume the user
obtains this set of patterns using a frequent pattern miner, although
any set of patterns over ⌦ will do. From this set F we then select
that set of patterns P ✓ F such that the optimal alignment A and
associated code table CT minimises L(D,CT ).

For notational brevity, we simply write L(D,P) as shorthand
for the total encoded size L(D,CT ) obtained by the code table
CT containing a set of patterns P and singletons ⌦, and being
code-optimal to the alignment A as found by SQS.

We begin by sorting the candidates X 2 F by L(D, {X}) from
lowest to highest. After sorting, we iteratively greedily test each
pattern X 2 F . If adding X to P improves the score, i.e. fewer bits
are needed, we keep X in P , otherwise it is permanently removed.
The pseudo-code for SQS-CANDIDATES is given as Algorithm 3.

Algorithm 3: SQS-CANDIDATES(F , D)

input : candidate patterns F
output : set of non-singleton patterns P that heuristically

minimise the Minimal Code Table Problem
1 order patterns X 2 F based on L(D, {X});
2 P  ;;
3 foreach X 2 F in order do
4 if L(D,P [X) < L(D,P) then
5 P  PRUNE(P [X,D, false);

6 P  PRUNE(P, D, true);
7 order patterns X 2 G by L(D,P)� L(D,P \X);
8 return P;

During the search we iteratively update the code table Hence, it
may be that over time, previously included patterns start to harm
compression once their role in covering the sequence is taken over
by new, more specific, patterns. As such, they become redundant,
and should be removed from P .

To this end, we prune redundant patterns (see Algorithm 4) after
each successful addition. During pruning, we iteratively consider
each pattern Y 2 P in order of insertion. If P \ X improves the
total encoded size, we remove X from P . As testing every pattern in
P at every successful addition may become rather time-consuming,
we use a simple heuristic: if the total gain of the windows of X is
higher than the cost of X in the code table we do not test X .

After SQS-CANDIDATES considered every pattern of F , we run
one final round of pruning without this heuristic. Finally, we order
the patterns in P by L(D,P)�L(D,P\X). That is, by the impact
on the total encoded length when removing X from P . This order
tells us which patterns in P are most important.

Let us consider the execution time needed by SQS-CANDIDATES.
Ordering patterns can be done in O(|F| kDk) time. Computing
L(D,P [ X) can be done in O(|P| kDk) ✓ O(|F| kDk) time.
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Algorithm 5: ESTIMATE(P,A,D). Heuristic for finding a pat-
tern X used by the current encoding with a low L(D,A [ PX )

input :database D, current alignment A, pattern P 2 CT
output :pattern PX with X 2 CT and a low L(D,A [ PX )

1 foreach X 2 CT do VX  ;; WX  ;; UX  ;; dX  0;
2 T  ;;
3 foreach occurrence v of P in the encoding (ignoring gaps) do
4 (a, b, P, k) v;
5 d the end index of the active window following v;
6 t  (v, d, 0); l(t) d� a;
7 add t into T ;
8 while T is not empty do
9 t argminu2T l(u);

10 (v, d, s) t; a first index of v;
11 w = (c, d,X, k) active window of a pattern ending at d;
12 if X = P and (event at a or d is marked) then
13 delete t from T ;
14 continue;
15 if Sk[a, d] is a minimal window of PX then
16 add v into VX ;
17 add w into WX ;
18 add (a, d,PX , k) into UX ;
19 dX  min(di↵ (V,W,U ;A) + s, dX);
20 if |X| > 1 then s s+ gain(w);
21 if X = P then
22 mark the events at a and d;
23 delete t from T ;
24 continue;

25 if w is the last window in the sequence then
26 delete t from T ;
27 else
28 d the end index of the active window following w;
29 update t to (v, d, s) and l(t) to d� a;

30 return PX with the lowest dX ;

SQS-CANDIDATES. After each successful addition of pattern X , we
scan for the gap events occurring in the active windows of X , and
test patterns obtained from X by adding a gap event as intermediate
event. The scan can be done in O(kDk) time, and in theory we may
end up testing |⌦| (|X| � 1) patterns. In practice, the number is
much smaller since accepted patterns typically have small gaps. If
any of these patterns in successfully added we repeat this procedure
in a recursive fashion. In practice, testing X is relatively fast, and
the total computational complexity is dominated by ESTIMATE.

5. RELATED WORK
Discovering frequent sequential patterns is an active research

topic. Unlike for itemsets, there are several definitions for frequent
sequential patterns. The first approach counts the number of se-
quences containing a pattern [24]. In such setup, having one long
sequence do not make sense. In the second approach we count
multiple occurrences within a sequence. This can be done by sliding
a window [13] or counting disjoint minimal windows [10].

Mining general episodes, patterns where the order of events are
specified by a DAG is surprisingly hard. For example, testing
whether a sequence contains a pattern is NP-complete [19]. Con-
sequently, research has focused on mining subclasses of episodes,
such as, episodes with unique labels [1, 14], and strict episodes [20].

Algorithm 6: SQS-SEARCH(D)

input :database D

output : significant patterns P
1 P  ;; A SQS(D, ;);
2 while changes do
3 F  ;;
4 foreach P 2 CT do add ESTIMATE(P,A,D) to F ;
5 foreach X 2 F ordered by the estimate do
6 if L(D,P [X) < L(D,P) then
7 P  PRUNE(P [X,D, false);
8 if X is added then test recursively X augmented with

events occurring in the gaps;

9 P  PRUNE(P, D, true);
10 order patterns X 2 G by L(D,P)� L(D,P \X);
11 return P ;

Discovering statistically significant sequential patterns is a sur-
prisingly understudied topic. One reason is that unlike for itemsets,
computing an expected frequency under a null-hypothesis is very
complex. Using independence assumption as a null-hypothesis
has been suggested in [7, 18] and a Markov-chain model has been
suggested in [6]. In [1] the authors use information theory-based
measure to determine which edges to include in a general episode.

Summarising sequences using segmentation is a well-studied
topic. The goal in segmentation is to divide the sequence in large
segments of homogenous regions whereas our goal is to find a set
of compact patterns that occur significantly often. For an overview
in segmentation, see [4], and for a segmentation tool see [8].

Mannila and Meek [12] regard general episodes, as generative
models for sequences. Their model generates short sequences by
selecting a subset of events from an episode and select a random
order compatible with the episode. They do not allow gaps and only
one pattern is responsible for generating a single sequence. This is
not feasible for our setup, where we may have long sequences and
many patterns occurring in one sequence.

SQS draws inspiration from the KRIMP [23] and SLIM [17] al-
gorithms. KRIMP pioneered the use of MDL for identifying good
pattern sets; specifically, mining sets of itemsets that describe a
transaction database well. As serial episodes are much more expres-
sive than itemsets, we here need a much more elaborate encoding
scheme, and in particular, a non-trivial approach for covering the
data. For mining the patterns, SQS-CANDIDATES shares the greedy
selection over an ordered set of candidates.

Smets and Vreeken recently gave the SLIM algorithm [17] for
directly mining KRIMP code tables from data. With SQS-SEARCH
we adopt a strategy that resembles SLIM, by considering joins XY

of X,Y 2 CT , and estimating the gain of adding XY to CT .
Whereas SLIM iteratively searches for the best addition, for effi-
ciency, SQS-SEARCH adopts a batch-wise strategy.

Lam et al. introduced GOKRIMP [9] for mining sets of serial
episodes. As opposed to the MDL principle, they use fixed length
codes, and do not punish gaps within patterns—by which their goal
is essentially to cover the sequence with as few patterns as possible,
which is different from our goal of finding patterns that succinctly
summarise the data. Bathoorn et al. [2] also cover greedily, and do
not consider gaps at all.

6. EXPERIMENTS
We implemented our algorithms in C++, and provide the source

code for research purposes, together with the considered datasets, as
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GraphMDL: Experiments

• 3 datasets
• AIDS-CA, AIDS-CM: about molecules (few labels, many cycles)

• National Cancer Institute AIDS antiviral sceen data
• UD-PUD-En: about dependency trees of english sentences (many 

labels, no cycles)
• Universal dependencies project 

• Quantitative results 

P. Cellier - Towards Usable 
Pattern Mining
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Dataset gSpan 
minsup

# Candidate 
patterns 

input

# Selected 
patterns 
output

AIDS-CA 20% 2194 115

AIDS-CA 15% 7867 123

AIDS-CA 10% 20596 148

AIDS-CM 20% 433 111

AIDS-CM 15% 779 131

AIDS-CM 10% 2054 163

AIDS-CM 5% 9943 225

UD-PUD-En 10% 164 162

UD-PUD-En 5% 458 249

UD-PUD-En 1% 6021 523

UD-PUD-En 0% 233434 773

• Drastic reduction

• Relatively stable in 
the number of selected 
patterns



GraphMDL+

• GraphMDL+ as SLIM and SQS-Search
• Generate-and-select algorithm
• Any-time algorithm
• Free-parameter
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If we have time 
Mining Periodic Patterns with a MDL 

Criterion 

Esther Galbrun, Peggy Cellier, Alexandre Termier, Bruno 
Crémilleux
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Conclusions

• MDL is great for picking important and useful patterns 

• KRIMP, SQS, GRAPHMDL approximate the MDL ideal very 
well 

• vast reduction of the number of itemsets 
• works for other pattern types equally well:

itemsets, sequences, streams

• Local patterns and information theory
• naturally induce good classifiers, clusterers, distance measures
• with instant characterisation and explanation,
• and, without (explicit) parameters 
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Conclusions

• When using MDL for pattern mining

• Question 1: what kind of model to use? 
• Data modelisation

• Question 2: how to encode the database? the model?
• Information theory 

• Question 3: how to find the « best » (or at least one good) model?
• Algorithmic 
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