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Introduction

• Reminder (Alexandre’s lecture): 
• Patterns = local regularities in data
• Frequent itemsets = regularities in transactional data (sets of elements)

• Other data?
• Many types: sequences, trees, graphs, intervals…
• More structured than sets (i.e. more relations between elements)

• Also have regularities !

→ need to extend pattern mining to structured data
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Problems due to data complexity

• Pb 1: Pattern identification in data
• FIS: simple set inclusion operation
• Structured data:

• Many possible inclusion definitions for sequences, trees, graphs…
• Inclusions may be computationally expensive
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⊆

A-> D    ⊆  A -> B -> C -> D ?



Problems due to data complexity

• Pb 1: Pattern identification in data
• FIS: simple set inclusion operation
• Structured data:

• Many possible inclusion definitions for sequences, trees, graphs…
• Inclusions may be computationally expensive

• Pb 2: Support counting
• Possible overlap between found occurrences 
• → how to count support?
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Problems due to data complexity

• Pb 1: Pattern identification in data
• FIS: simple set inclusion operation
• Structured data:

• Many possible inclusion definitions for sequences, trees, graphs…
• Inclusions may be computationally expensive

• Pb 2: Support counting
• Possible overlap between found occurrences 
• → how to count support?

• Pb 3: Complexity
• FIS: O(2#items)
• Structure data: search space may be exponentially bigger! 

• More precise values depend on problem
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{}

A B C D

A B A C A DBC BD CD

A B C A B D BCD ACD

A A (A B) BB (BC) …

AAA A(AB) …AAB
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Sequential data: What are we looking for?

• Example: Let us consider data from retail
• Products bought by a customer
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1st jan. 
2005

1st feb. 
2005

1st Apr. 
2005

1st June 
2005

31st dec. 
2005

Caviar
Wine

Beer
Vegetable

Chocolate Beer
Chocolate
Bread
Vegetable

Chocolate 
Champagne

What are we looking for?
Repetitions 

considering chronology between transactions 



Sequential data: What are we looking for?

• Example: Let us consider data from retail
• Products bought by a customer
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1st jan. 
2005

1st feb. 
2005

1st Apr. 
2005

1st June 
2005

31st dec. 
2005

Caviar
Wine

Beer
Vegetable

Chocolate Beer
Chocolate
Bread
Vegetable

Chocolate 
Champagne

What are we looking for?

Example: <(Beer Vegetable) (Chocolate)>



Sequential patterns

Informally

<(A B) C (D E)>

A,B → C → D,E

Read as: 
people who buy A and B 

then buy C 
and then buy D and E 

in a month
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(Some) types of sequential patterns

• Substrings   B → C → B

• Sequences with gaps B → C → B → A

• Regular expressions  B → ¬C → A|B

• Sequences of itemsets {B} → {C} → {A,D}

• Episodes

ABCBDADBBCBAAABBCBDBABDABA

Images from F. Moerchen
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Application area

• Bioinformatics 
• ex: patterns = parts of DNA sequences

• Health 
• ex: patterns = health care pathways

• Debugging 
• ex: patterns = sequences of instructions / function calls

• Marketing 
• ex: patterns = customer buying habits in time

• …
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Vocabulary

• Vocabulary (reminder)
• Let I={i1,…,in} be the set of all items.
• An itemset is a subset of I and denoted (i1i2…im) where ik∈ I

• Sequence
• A sequence s is an ordered list of itemsets denoted by <s1s2…sp>
• Order can be:

• Implicit: position of elements 
• Ex: DNA  -  ACCGT ó <A, C, C, G, T>

• Explicit: elements + timestamps 
• Ex: Log - <(1, pushButton), (2, endOfWorld)>

• k-sequence
• A k-sequence is a sequential pattern of length k (k items).
• Example

• <(a b) (c) (d e)> is a 5-sequence.

• Questions
• <(a) (c) (d e)> is a ?-sequence.
• <(a) (c) (d) (z) (y)> is a ?-sequence.
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Sequence Database

• A sequence database consists of ordered elements or events

TID itemsets
10 a b d
20 a c d
30 a d e f
40 e f

SID sequences
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

transaction database sequence database
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vs

Note: Implicit timestamp here



Sequence Database

• Dataset
• Transactions → Sequences of itemsets with timestamp (date)

• Example
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Date

SeqId

Monday Tuesday Wednesday Thursday

S1 abc bde abf ad

S2 abc abc - bcf

S3 bce - adf abc

S4 acf bd abf e



seq. inclusion – sub-sequence – super-sequence

• Sequence inclusion
• Let S1=<a1,…, an> and S2=<b1,…,bm> be two sequences.

• S1 is a sub-sequence of S2   or  S2 is a super-sequence of S1

• denoted by S1 ⊆ S2

• If there are integers 1≤i1<i2< … < in≤m s.t. a1 Í bi1, a2 Í bi2, …, an Í bin

• Example
• S1=<(10) (20 30) (40) (20)>

• Questions
• S2=<(20) (40)> Í S1 ?
• S3=<(20) (30)> Í S1 ?
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Sequential Patterns

• Sequential pattern
• A sequential pattern is defined as a sequence <X1,…, Xn> 
• where Xi is an itemset.

• Example
• <(a b) (c) (d e)>

• a and b are synchronous
• d and e are synchronous
===> they share the same timestamp
• c happens after a and b
• d and e happen after c

• Support
• A sequence S supports a sequential pattern P if P ⊆ S .

• The support value of P, denoted by sup(P) is then defined as the 
proportion of sequences supporting P.

• Frequent sequential pattern
• A sequential pattern S is frequent if sup(S) >= minsup

• where minsup is a given threshold
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Example of sequential patterns

• sup(<(ac) (b) (bf)>)

• Exercise: Compute the support value of the following sequential patterns
• <(a) (bd) (a)>

• <(b) (b) (f)>

• <(b) (d) (f)>

• <(cf) (b)>

20

seq./date d1 d2 d3 d4

S1 abc bde abf ad

S2 abc abc - bcf

S3 bce - adf abc

S4 acf bd abf e



Sequential pattern mining: problem definition

• Given 
• a sequence database: D
• the minimum support threshold: minsup

• Problem definition
• The problem of sequential patern mining is to find the set of all 

frequent subsequences from D wrt minsup.
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Search Space for itemset mining (lattice) 23

{}

A B C D

A B A C A DBC BD CD

A B C A B D BCD ACD

A B C D



Search Space for sequential pattern mining 24

{}

A B C D

A B A C A DBC BD CD

A B C A B D BCD ACD

A A (A B) BB (BC) …

AAA A(AB) …AAB

…



Sequential Pattern Mining Algorithms

• Apriori-based Algorithms (also named Generate & Prune)
• Horizontal Data Format Algorithms

• GSP (hash tree)
• PSP (prefix tree – less memory)

• Vertical Data Format Algorithms
• SPADE
• SPAM
• LAPIN-SPAM

• Pattern Growth Algorithms
• FreeSpan
• PrefixSpan

• Extensions
• Closure

• CloSpan
• BIDE
• Gap-BIDE
• Clasp

• Episode Mining
• Minepi, Winepi

• Constraints
• SPIRIT
• SDMC
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General Approach: generate/prune

• GSP (Generalized Sequential Pattern) mining algorithm
• [Agrawal and Srikant, EDBT’96]
• In the same vein as Apriori for frequent itemset mining
• GSP is a horizontal data format based SPM algorithm.
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GENERATION

SCAN/PRUNING

SCAN N-frequents N-candidates

N=1

N=N+1

N-frequents



GSP: based on Apriori

• Requirements:
• 2 kinds of extensions => to generate candidates
• the anti-monotony property => to prune candidates

28

N=0
While (ResultN != NULL)

N = N+1
Generate candidates (CandidatesN)
Prune candidates (ResultN)
Result = Result ⋃ ResultN

Result is the whole set of sequential patterns



2 kinds of extension

S-extension
Add an itemset to the sequence

Example:  <(a,b)(c)>   → <(a,b)(c)(d)> 

I-extension
Add an item into an existing itemset of the sequence

Example:  <(a,b)(c)>   → <(a,b)(c,d)> 

29



Anti-monotony property

• Property:
• If a k-sequence is not frequent 
• THEN all (k+1) sequences which contain it are not frequent too.

• Example: 
• IF        sup(<(A),(B,C)>)       < minsup
• THEN sup(<(A),(B,C),(D)>) << minsup

• This property allows to adapt Apriori to extract
• Frequent sequential patterns
• (and thus temporal association rules)
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GSP: based on Apriori

• Method in details
• generate frequent length-1 candidates from frequent items in DB : <A>, <B>

• generate frequent length-2 candidates by self-joining 2 frequent length-1 patterns: 
<(A) (A)>, <(A) (B)>, <(A B)>

• for each level (i.e., sequences of length-k) do
• scan database to collect support count for each candidate sequence
• generate candidate length-(k+1) sequences from length-k frequent sequences using 

Apriori (self-join)

• repeat until no frequent sequence or no candidate can be found

• Major strength: Candidate pruning by Apriori property (anti-monotonicity)

• Self-join s1 et s2:
• Remove first element of s1 (s1-firsts1) and last element of s2 (s2-lasts2)
• If (s1-firsts1)  = (s2-lasts2) then generate s1+lasts2
• Examples

< (A B) (C ) > < (A B) (C ) >
+ < (B)  (C D)> + < (B) (C ) (E)>
< (A B) (C D) > < (A B) (C ) (E) >
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Exercise/Example (GSP)

• Sequence database
• 8 items
• 5 sequences
• (minsup=2) 

 

32

Id_seq Séquence
1 <(bd) (c) (b) (ac)>
2 <(bf) (ce) (b) (fg)>
3 <(ah) (bf) (a) (b) (f)>
4 <(be) (ce) (d)>
5 <(a) (bd) (b) (c) (b) (ade)>



Exercise/Example (GSP)

• N=2
• Candidate 

generation
• 51 sequences 

with 2 items
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<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

I-extension

<a> <b> <c> <d> <e> <f>

<a> <(a)(a)> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

S-extension

Remark:

Without Apriori property,
8*8+8*7/2=92 candidates

Apriori property prunes 
44.57% candidates



The most time consuming step of GSP

• Computation of the candidate support 
• Candidates stored in main memory

• It’s important to limit the disk access 
• Load the sequence database in memory when it’s possible
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SPADE

• SPADE (Sequential Pattern Discovery using Equivalent 
classes)

• [Zaki, ML’01]

• SPADE is a SPM algorithm based on a vertical data format.
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Vertical format 37SID Séquence
1 <(bd) c b (ac)>
2 <(bf) (ce) b (fg)>
3 <(ah) (bf) a b f>
4 <(be) (ce) d>
5 <a (bd) b c b (ade)>

a b c d e f g h

SID EID SID EID SID EID SID EID SID EID SID EID SID EID SID EID



SPADE algorithm

• Algorithm
• Scan DB and then transforms the database into the vertical format
• Filter non frequent 1-sequences (count the number of =/= SID)

• Example with minsup=4: Frequent 1-sequences: <b>, <c>
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a b c d e f g h

SID EID SID EID SID EID SID EID SID EID SID EID SID EID SID EID

1 4 1 1 1 2 1 1 2 2 2 1 2 4 3 1

3 1 1 3 1 4 4 3 4 1 2 4

3 3 2 1 2 2 5 2 4 2 3 2

5 1 2 3 4 2 5 6 5 6 3 5

5 6 3 2 5 4

3 4

4 1

5 2

5 3

5 5
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SPADE algorithm

• Algorithm
• Scan DB and then transforms the database into the vertical format
• Filter non frequent 1-sequences (count the number of =/= SID)

• Example with minsup=4: Frequent 1-sequences: <b>, <c>

• Repeat until no more sequences can be generated
• Join k-sequences such that they share SID and the EIDs follow the 

sequential ordering
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b

SID EID

1 1

1 3

2 1

2 3

3 2

3 4

4 1

5 2

5 3

5 5

c

SID EID

1 2

1 4

2 2

4 2

5 4



SPADE algorithm

• Algorithm
• Scan DB and then transforms the database into the vertical format
• Filter non frequent 1-sequences (count the number of =/= SID)

• Example with minsup=4: Frequent 1-sequences: <b>, <c>

• Repeat until no more sequences can be generated
• Join k-sequences such that they share SID and the EIDs follow the 

sequential ordering
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b

SID EID

1 1

1 3

2 1

2 3

3 2

3 4

4 1

5 2

5 3

5 5

<b c>

SID EID (b) EID (c)

1 1 2

1 1 4

1 3 4

2 1 2

4 1 2

5 2 4

5 3 4

c

SID EID

1 2

1 4

2 2

4 2

5 4

<c b>

SID EID (c) EID (b)

1 2 3

2 2 3

5 4 5



SPADE algorithm

• Algorithm
• Scan DB and then transforms the database into the vertical format
• Filter non frequent 1-sequences (count the number of =/= SID)

• Example with minsup=4: Frequent 1-sequences: <b>, <c>

• Repeat until no more sequences can be generated
• Join k-sequences such that they share SID and the EIDs follow the 

sequential ordering
• Filter non frequent (k+1)-sequences (count the number of =/= SID)

• To reduce space memory
• Join two k-sequences that have all subsequences in common except 

the last element (cf itemset => lexicographical improvement)

• store only one EID, the one of the last element

• lattice decomposition (class of sequences)
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Exercise

• Exercice
• Join those two k-sequences with respect to SPADE 

• minsup=3
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d

SID EID

1 2

2 2

3 4

3 5

4 5

5 2

5 6

6 1

6 5

e

SID EID

1 2

2 3

3 4

3 6

4 3

4 6

5 6

6 5

6 7



Drawbacks of generate/prune approaches

• A lot of irrelevant candidates are generated 
• For instance, for 1000 frequent sequences with 1 item, the number of 

candidate sequences with 2 items is: 
• 1000 x 1000 x (1000 x 999)/2 = 1 499 500

• Several readings of the sequence database 
• Beam search approach is memory-consuming

• To extract long sequences, that kind of approaches is not 
adapted

• Exponential number of candidate subsequences are generated
• E.g., for a 100-sequence: 2100 - 1 ≈1030
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General Idea of Pattern Growth Approaches

• No candidate generation

• Frequent items are extracted from projected bases

• Greedy algorithm

• [Pei et al, ICDE’01]
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General Idea: PrefixSpan (Pei et al. @ICDE’01)

• Use frequent prefix to divide the search space 
and compute projected bases

• Look for only relevant sequences
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Definition

• Definition: suffix
• Let S=<I1, …, In> be a sequence. 
• Let S’=<I’1, …, I’m> be a subsequence of S.
• S’’ =<Jo, …, Jn> is a suffix of S w.r.t. S’ if: 

• <I1, …, Io> is the smallest prefix that contains S’
• And all items from (Jo – I’m) are ordered after element of I’m in Io.

• Examples 
• S = <(a) (abc) (ac) (d) (cf)> 

• Suffix(<a>) = <(abc) (ac) (d) (cf)>
• Suffix(<(a)(b)>) = <(c) (ac) (d) (cf)>
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Projected base 48

Id_seq Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Projection

<a> <(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>



PrefixSpan (Pei et al. @ICDE’01)

• Informal algorithm
• Step 1: 

• Extraction of frequent 1-sequences
• Example: <a>, <b>, <c>, <d>, <e>, <f>, <g>
• The set of sequential patterns is thus divided into 7 subsets

• Ones that start with <a>
• Ones that start with <b>
• Ones that start with <c>
• Ones that start with <d>
• Ones that start with <e>
• Ones that start with <f>
• Ones that start with <g>

• Step 2: 
• Computation of the projected base for each prefix

• Step 3: 
• For each prefix, computation of candidates to be an extension. 
• The frequent candidates are added and the extension becomes a new prefix. 
• Go to Step 2

• End: No more prefix can be generated
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Projected base

• Exercise
• minsup=4 (absolute support) equivalent to relative support 4/4=1 (100%)
• Apply PrefixSpan on the following database

50

Id_seq Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)ccb>

40 <eg(af)cbc>
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Projected base

• Step 2(3): projected database

• Prefix: <acc>
• ∅

• END

• Result
• <a>, <b>, <c>
• <a b>, <a c>, <c c>
• <a c c>

55

Id_seq Projected DB

10 <d(cf)>

20 <(ae)>

30 <b>

40 <>



Advantages of PrefixSpan

• No candidate generation

• The projected sequence database is smaller at each step

• The most consuming step
• Projected database building

• Improvement thanks to pseudo-projections
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Pseudo Projection

• Instead of copy sequence database at each step, use
• pointers on the sequence
• and offset to identify the suffix

57

s=< a (abc) (ac) d (cf) >

s|<a> : (     , 2)   < (abc) (ac) d (cf) >

s|<ab> : (     , 4)   < (_c) (ac) d (cf) > 

<a>

<ab>
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Discussion about time parameters

• 3 main time parameters/constraints
1. Duration of sequences (data preparation)
2. Granularity of itemsets (data preparation)
3. Time gap between itemsets 

60

gap

granularity

(a)     (b)   (c)    (a) (b)   (ab)         (c)  (abc)    (a)
duration



Duration of sequences

• Duration of sequences
• Chunking size of target sequences
• Preprocessing

• Examples
• Complete sequences
• Specified time interval
• Split into years, months…

• Last chunking strategy enables periodical sequential patterns
• “Each year, a wet spring results in increased bookings of travels 

abroad in summer”
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(a)     (b)   (c)    (a) (b)   (ab)         (c)  (abc)    (a)
duration



Event folding window

• Event folding window
• Atomicity of transactions happening within a given time interval
• Preprocessing

• “Which time unit?”

• Examples
- Grocery: sales of a week
- Travel agency: travels purchased during a year

• Event folding window => Important choice
• Too short interval Þ low support sequences

• Example: sequences with a too fine grain 
• <A,B,C> or <B,A,C> instead of having <AB,C> 

• Too long interval Þ no more (or less) sequentiality
• Example: Sequence with a big grain 

• <AB> instead of <A,B> 
• ordering between A and B has disappeared
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granularity

(a)     (b)   (c)    (a) (b)   (ab)         (c)  (abc)    (a)



Gap constraint

• Time gap between itemsets
• Number of time units between successive itemsets of sequential 

patterns
• Until which time gap do one still consider that there is sequentiality?

• Intuitively, delete too far events

• Time gap between itemsets
• Number gap=0 => contiguous

• transactions succeed immediately
• E.g., “sales of A, B, C in 3 successive weeks” (time unity is the week)

• gapmin ≤ gap ≤ gapmax
• Transaction cannot be too close nor to far
• E.g., “If someone rents movie Matrix reloaded, he may probably also rent 

Matrix revolutions within the 15 days” (time unity is the day)

• Infinite gap
• Only sequentiality
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gap

(a)     (b)   (c)    (a) (b)   (ab)         (c)  (abc)    (a)



About constraints

• Application of time constraints
• Duration and granularity are usually applied before the extraction

• To prepare the sequence database

• Whereas gap is used when mining 
• To extract the sequential patterns

• Other constraints
• Time-relative constraints are only some of possible constraints
=> Other constraints 

• incompatibility between items
• templates (regular expressions)
• length of patterns
• ...
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gap

granularity

(a)     (b)   (c)    (a) (b)   (ab)         (c)  (abc)    (a)
duration



Exercise

• Exercise
• Consider the following parameter to extract patterns

• Time gap = [0,1]

• Compute the support values of
• <(a) (bd) (a)> = <a (bd) a>
• <(b) (b) (f)> = <b b f>
• <(b) (d) (f)> = <b d f> 
• <(cf) (b)> = <(cf) b> 
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Seq./t t=1 t=2 t=3 t=4 t=5 t=6

S1 abc b de af b ad

S2 abc bc a bcf

S3 bce adf e abc f

S4 acf bd abf e
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Closed and Maximal Sequential Patterns

• Definition
• A sequential pattern s is maximal over a set of patterns S
• Iff ∄s’∈S, s ⊆ s’ (or ∀s’∈S, s⊈s’) 

• Definition
• A sequential pattern s is closed over a set of patterns S
• Iff ∄s’∈S, s ⊆ s’ (or ∀s’∈S, s⊈s’) 
• s.t. sup(s)=sup(s’)

• Example
• Let us consider the following set of sequences
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Pattern Support Maximal ? Closed ?
<(ab) (c) (e)> 2
<(a) (c) (d)> 4
<(a) (c) (e)> 3
<(c) (d) (e)> 5
<(a) (c)> 4
<(b)> 7



Closed and Maximal Sequential Patterns

• How to compute those patterns?

• As postprocessing

• With specific algorithms (e.g., CloSpan, BIDE)
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CloSpan (Yan,Han,Afshar @SDM’03)

• CloSpan is an extension of PrefixSpan
• Steps

• Generation of all frequent sequential patterns and storage in a prefix 
sequence lattice

• Post-pruning to eliminate non-closed sequences
• Comparison each sequence with the other => O(N2) complexity
• To reduce the complexity => Use of a Hash table

• Key=support value
• Compare only frequent sequences that have the same support value to check 

if one is included in another one
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Partial Prefix Sequence Lattice
Minsup=2
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Mining sequential patterns with gap constraints

How to take into account gap constraints?

• Approach 1:
• Mine sequential patterns without gap constraints
• Postprocess the discovered patterns

• Approach 2:
• Modify GSP to directly prune candidates that violate gap constraints
• Question: 

• Does Apriori principle (anti-monotonicity) still hold?
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Mining sequential patterns with gap constraints

• Does Apriori principle (anti-monotonicity) still hold?

Suppose:    
maxgap= 1  
minsup = 50%

<(b) (e)> support = 40% (10, 30)
but

<(b) (c) (e)>   support = 60% (10, 30, 40)

Problem exists because of maxgap constraint

No such problem if maxgap is infinite

<(ac)(bde) >50

<(b)(c)(d)(de)>40

<(ab)(bcd)(bde)>30

<(ab)(bcd) >20

<(abd)(bc)(e)>10

SequenceSeq. ID
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Mining sequential patterns with gap constraints

Contiguous subsequences

• Definition: contiguous
• s is a contiguous subsequence of w = <e1>< e2>…< ek> 
• if any of the following conditions hold:

• s is obtained from w by deleting an item from either e1 or ek
• s is obtained from w by deleting an item from any element ei that 

contains at least 2 items
• s is a contiguous subsequence of s’ and s’ is a contiguous 

subsequence of w (recursive definition)

• Example: 
• s = < (a) (b) > 

• is a contiguous subsequence of 
< (a) (b c)>, < (a b) (b) (c)>, and < (c d) (a b) (b c) (d) >  

• is not a contiguous subsequence of
< (a) (c) (b)> and < (b) (a b) (c) (b)>
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Mining sequential patterns with gap constraints

Contiguous subsequences [Gap-Bide]

• Modified Candidate Pruning Step
• Without maxgap constraint:

• A candidate k-sequence is pruned 
• if at least one of its (k-1)-subsequences is infrequent

• With maxgap constraint:
• A candidate k-sequence is pruned 
• if at least one of its contiguous (k-1)-subsequences is infrequent
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For candidate <(b) (c) (e)>
Check 2 contigous 2-subsequences:
• <(b) (c)>
• <(c) (e)>
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Episode Mining

Episode mining 
= 

analysing sequences of events to discover recurrent episodes

[Mannila et al. DMKD’97]
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Episode Mining

• Event sequence
• Alarms in telecommunication network

•  User interface actions

• Occurrences of recurrent illnesses
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Link failure Link failureConnection 
failure

Connection 
failure

Connection 
failure



Episode Mining

• Event sequence 
• Example: human trace

• Event types
• R = {A=‘eat’, B=‘work’, C=‘prepare coffee’, D=‘wake up’}

• Occurrence times
• integer → 10 … 150

• Event: pair (E, t)
• E: event type
• t: occurrence time
• Example: (A,30)

• Sequence on R: S = (s, Ts, Te)
• Example: 

• s= <(D,10), (C,20), …, (A,150)>
• starting time: Ts = 10
• ending time: Te = 150

• A time slot may contain 0, 1 or several events

0   10   20   30    40    50   60   70    80   90  100 110 120 130 140 150

D    C     A     B    D     A    B     C     A    D     C     A     B     D    A
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Episode Mining

Episode
• Informally, an episode is a partially ordered collection of events occurring together
• E = (V, ≤)

• V: collection of event types
• ≤: partial order

Occurences
• Episode E occurs in a sequence S 
• if it’s possible to match event types of E on events of S 
• so that the partial order ≤ is respected

Partial orders
• Total order: serial episode

• No order: parallel episode A

B

Parallel 
episode

A

B

C

More complex 
episode with

serial and parallel

A B
Serial episode

Note: in the sequence 
there can be other 
events occurring 
between A and B
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Note: We mostly consider the discovery 
of serial and parallel episodes



WINEPI: sliding window

• The name of the WINEPI method comes from the technique it uses: 
a sliding window 

• Sliding window
• A window is slided through the event-based data sequence
• Each window "snapshot" is like a row in a database
• The collection of these "snapshots" forms the rows in the database

0    10   20  30   40  50   60  70   80  90

D    C     A    B     D    A      B    C
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Window width: 40 s
• last point excluded

First (last) window contains first (last) point: 
• 11 possible windows on the example

N° Sequence

1 D

2 DC

3 DCA

4 DCAB

5 CABD

6 ABDA

7 BDAB

8 DABC

9 ABC

10 BC

11 C



WINEPI: frequency

• The frequency/support of an episode 𝛂 is 
• « the fraction of windows in which the episode occurs »
• defined as fr(𝛂, S, w) =  |{Sw Î W(S, w) | a occurs in Sw}|

|W(S, w) | 

• w: window width 
• Where W(S, w) is the set of all windows of S w.r.t w

• An episode is frequent if
• fr(𝛂, S, w) ³ min_freq (threshold)

• Anti-monotonicity
• if episode a is frequent  then all subepisodes b Í a are frequent.
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WINEPI algorithm

• Input: 
• A set R of event types, 
• an event sequence s over R, 
• a set E of episodes, // parall or serial
• a window width win, 
• and a frequency threshold min_fr

• Output: 
• The collection of frequent episodes:  F(s, win, min_fr)

1. compute C1 ç {a Î E | |a| = 1};
2. i = 1;
3. while Ci¹ Æ do
4. // Database pass

compute Fi(s, win, min_fr) ç {a Î Ci | fr(a, s, win) ³ min_fr};
5. i ç i+1;
6. // Candidate generation

compute Ciç {a Î E | |a| = i, and ∀b Î E s.t. b Í a and b Î F|b|(s, win, min_fr),};
7. for all i do ouptut Fi(s, win, min_fr) 
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All subepisodes have to be frequent

Test of frequency



WINEPI algorithm: generation of candidate episodes

• Example: find all parallel episodes with frequency > 40 % 
(present in at least 5 windows)

– Create singletons, i.e., parallel episodes of size 1 
– A, B, C, D

– Select the frequent singletons 
– here all are

– From those frequent episodes, build candidate episodes of size 2
– AB, AC, AD, BC, BD, CD

– Select the frequent parallel episodes of size 2 
– here all are

– From those frequent episodes, build candidate episodes of size 3
– ABC, ABD, ACD, BCD 

– Select the frequent episodes of size 3
– only ABD occurs in more than four windows

– There are no candidate episodes of size four
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0    10   20  30   40  50   60  70   80  90
D    C   A    B     D   A     B    C

N° Sequence

1 D

2 DC

3 DCA

4 DCAB

5 CABD

6 ABDA

7 BDAB

8 DABC

9 ABC

10 BC

11 C



Alternative: MINEPI

• [Mannila et al. DMKD’97]

• Alternative approach to discover episodes
• No sliding windows
• For each potentially interesting episode, find out the exact 

occurrences

• Minepi is based of the notion of minimal occurrences
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Minimal occurrence

• Formally, given an episode a and an event sequence S, the 
interval [ts,te] is a minimal occurrence a of S,

• If a occurs in the window corresponding to the interval
• And If a does not occur in any proper subinterval

• The set of minimal occurrences of an episode a in a given 
event sequence is denoted by mo(a):

• mo(a) = { [ts,te] | [ts,te] is a minimal occurrence of a }

• Example
• b consisting of event types A and B has three minimal 

occurrences in s: mo(b) = {[30,40], [40,60], [60,70]} 
• Note: [30,70] is not minimal

• a has one occurrence in s: mo(a) = {[60,80]}
• Note: [30,80] is not minimal
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D     C     A      B      D     A     B      C

0    10     20    30    40    50   60   70    80   90

A

B
b:

A

B
b:

A

B
Ca :



Minepi
• Task: Find all serial episodes

• Using maximum time bound of 40 secs
• min_fr=1

• Create singletons, i.e., episodes of size 1 
• (A, B, C, D)

• Create an occurrence table 
• will use inverse tables
• A: 30, 60   ;   B: 40, 70    ;    C: 20, 80    ;    D: 10, 50

• Recognize the frequent singletons 
• here all are

• From frequent episodes of size 1 build candidate episodes of size 2
• AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC

• Use the inverse table to create minimal occurrences for the candidates
• Mo(AB)={[30,40], [60,70]}

• Read the first occurrence of A (30-30), and find the first following B (40-40)
• Read the second occurrence of A (60-60), and find the first following B (70-70)

• Continue with BA, AC etc
• Recognize the frequent episodes of size 2 

• here almost are

• From frequent episodes of size 2 build candidate episodes of size 3
• And so on
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