Graph pattern mining J

Francesco Bariatti

francesco.bariattiQirisa.fr

04/01/2021

Graph pattern mining 0ajoi/2021 123

mailto:francesco.bariatti@irisa.fr

@ Graphs notions and problem statement
o Graph definitions
@ Support in graphs

© Pattern-merging algorithms (Apriori-based, BFS)
© Pattern-growth algorithms (DFS)
© Canonical codes

© Conclusion

Graph pattern mining 0aj01/2021 223

Graphs notions and problem statement

@ Graphs notions and problem statement
o Graph definitions
@ Support in graphs

Graph pattern mining 0aj01/2021 223

Graphs notions and problem statement Graph definitions

e Graph G = (V, E): data structure with a set of vertices V and a set of edges
E C V x V connecting them
o Undirected graph: edges (u,v) and (v, u) are the same.
o Labeled graph G = (V, E,I): labeling function I associating labels to vertices
and edges.
e Most graph mining approaches focus on undirected labeled graphs.

@ Graphs are sometimes called networks depending on the domain

@ Graphs are a powerful and expressive structure to represent data, used in
many domains: molecules, physical networks (telco), social networks, text
corpora, program traces (call graph), semantic web...

Rennes

O altMin N\ country o~ lang O
N4

Francais

Rennes llle-et-Villaine

Francesco Bariatti Graph pattern mining 04/01/2021 3/23

(Sub)graph isomorphism

@ Graphs can appear different but actually have the same structure
o Graph isomorphism: recognizing if two graphs are the same

o Isomorphism: bijective function mapping vertices of G1 to vertices of G2 so
that edges and labels are preserved

X 7%

et ,--"-—Gz
G1 and G2 are isomorphic

Graph pattern mining 0aj01/2021 423

(Sub)graph isomorphism

e Subgraph isomorphism: recognizing if a graph is part of another graph
o A graph G’ is subgraph isomorphic to a graph G if there exist an injective
function € € V' — V such that Ve = (u,v) € E' (e(u),e(v)) € E;
Vv e V' I(e(v)) =I(v); Ve € E' I(e(e)) = I(e).
o We call ¢ an embedding or occurrence of G’ in G

G’ is a subgraph of G1

@ Subgraph isomorphism search is NP-complete!
o In practice if labels are diverse enough, it can be computed in reasonable time.
But sometimes data does not play nice

Graph pattern mining 0aj01/2021 523

Graph pattern mining

Graph pattern mining is essentially the problem of discovering frequent subgraphs
(patterns) occurring in the input data graph(s). J

@ Find structures describing interesting concepts in the data
@ Abstract parts of the data as instances of patterns
@ Learn about the data by looking at what is frequent in it

0, \
)5 Yy

[+]

o
N

Example patterns: / / f

¢ N

Graph pattern mining 08j01/2021 623

What is frequent?

@ Discovering frequent subgraphs = discovering subgraphs with a support
greater than user-given parameter minsup

@ Support definition depends on the kind of graph data

o Base idea similar to other pattern mining domains: “how often is the pattern
found in the input data?”

Two families of graph data:
o Graph collection: a (generally large) set of (generally small) graphs.

e e.g. molecules, sentences

@ Single graph: the data is a unique (generally large) graph
e e.g. semantic web, social networks, DNA

Graph pattern mining 0ajo1/201 7/23

What is frequent in a graph collection?

Let D be a graph collection and P a graph pattern,

support(P) D]

_ |{g € D | P is subgraph-isomorphic to g}|

@ Each graph of the collection can only contribute once to the support, even if

it has multiple occurrences of the pattern

Y z b Y

X a e
Data: V bxq a

X Y
Patterns: ._a_® a i j b
Y Y

Support: Support:

Francesco Bariatti Graph pattern mining

04/01/2021

8/23

What is frequent in a graph collection?

Let D be a graph collection and P a graph pattern,

_ |{g € D| P is subgraph-isomorphic to g}
B D|

support(P)

@ Each graph of the collection can only contribute once to the support, even if
it has multiple occurrences of the pattern

X a Y z b Y z X
O,
Data: b a Vq a b a g
a ° . X
X Y a X Y

z X a Y
Patterns: X._EG)V a i j b b
Y c Y X
Support: Support: Support:

@ This measure is anti-monotonic: support of a graph is lower or equal to
support of its subgraphs

Graph pattern mining 0aj01/2021 8/23

What is frequent in a single graph?

Naive solution
Count how many occurrences the pattern has in the graph. J

Data:

Return of the Jedi Raiders of the lost ark

Back to the Future

Patterns: o o_)-

Naive Naive Naive
support: 3 support: 6 support: 7

Naive support is not anti-monotonic

Graph pattern mining 0aj01/2021 923

What is frequent in a single graph?
Overlap-based approaches [Kuramochi and Karypis, 2004]

@ Compute overlap graph of pattern embeddings
@ Support is size of MIS (Maximum Independent Set) of overlap graph

@ i.e. maximum number of non-overlapping embeddings of the pattern

Possible MIS: o
Overlap support: 2

Overlap-based support is anti-monotonic
MIS computation is NP-complete

Graph pattern mining 04/01/2021

10/23

What is frequent in a single graph?

Minimum image based support [Bringmann and Nijssen, 2008]

Let D be a single data graph and P a graph pattern,

support(P) = m‘i/np [{e(v) | € is an embedding of P in D}|
ve

Harrison Ford Karen Allen

Data: Carrie Fisher
(R eiielE] Raiders of the lost ark

Kenny Baker
Back to the Future

Vertex 3 data vertices 6 data vertices ? data ? data
occurrences: vertices vertices
Support: ? ? ?

Minimum image based support is anti-monotonic
Does not need to compute a NP-complete problem

Graph pattern mining 0aj0i/2021 1123

Pattern-merging algorithms (Apriori-based, BFS)

© Pattern-merging algorithms (Apriori-based, BFS)

Graph pattern mining 0aj0i/2021 1123

Pattern-merging algorithms (Apriori-based, BFS)

Pattern-merging algorithms

If the support measure is anti-monotonic, for a k-size pattern to be frequent, all
its (k-1)-size elements must be frequent.

Pattern-merging graph mining algorithms work similarly to Apriori:
Q Given Lg the set of k-size frequent patterns

© Merge compatible k-size patterns to create Cki1 the set of candidate
(k+1)-size patterns

o Compatible k-size patterns: patterns that have a common (k-1)-size core (i.e.
differ in only one element)

@ Prune Ciy1: only retain patterns whose all (k-1)-size elements are frequent
@ Create Lg. 1 by computing support of all patterns in Cyq
o If Ly s =0, stop

Graph pattern mining 0a/01/2021 1223

Pattern-merging algorithms (Apriori-based, BFS)

@ Main pattern-merging graph mining algorithms:
o AGM/AcGM [Inokuchi et al., 2000]
e FSG [Kuramochi and Karypis, 2001]
o DPMine [Gudes et al., 2006]
o Main difference is the definition of a k-size pattern: k vertices, k edges, k
edge-disjoint paths, ...

Graph pattern mining 0a/01/2021 13/23

Pattern-merging algorithms (Apriori-based, BFS)

Drawbacks of pattern-merging approaches

o Merging k-size patterns to create (k+1)-size pattern requires finding patterns
that share a common (k-1)-size core — subgraph isomorphism

@ Pruning step: need to verify if (k-1)-size elements of a pattern are frequent
— subgraph isomorphism

@ Support computation: need to find occurrences of pattern — subgraph
isomorphism

o Can be skipped by storing information in memory — memory consumption

@ Breadth-First Search (BFS): need to store all frequent k-size patterns — high

memory consumption

Remember that subgraph isomorphism is NP-complete!)

Graph pattern mining 0a/01/2021 1423

Pattern-growth algorithms (DFS)

© Pattern-growth algorithms (DFS)

Graph pattern mining 0a/01/2021 1423

Pattern-growth algorithms

Solve drawbacks of pattern-merging algorithms:
e Expand frequent patterns by looking at possible frequent extensions of their

embeddings

o No need to merge patterns — avoid subgraph-isomorphism check: time gain
o No need to store all k-size patterns to generate (k+1)-size patterns: memory

gain

o Only generate frequent patterns — avoid testing non-frequent candidates:

time gain

@ Most algorithms in this family use depth-first search to generate patterns

— often called DFS algorithms

Data

Francesco Bariatti

Support: 3/3

A

Supy

Graph pattern mining

eeeceeeeeeey FrEQUEN extension

a
) il
Support: 2/3
a
b
port: 2/3

04/01/2021

15/23

Pattern-growth algorithms

Most used/cited pattern-growth algorithms [Wérlein et al., 2005]:
o MoFa [Borgelt and Berthold, 2002]
o Developed to find substructures in collection of molecules
o Least efficient of the four because it generates many times the same patterns
@ gSpan [Yan and Han, 2002]
o The most cited

o Introduces techniques to avoid generating multiple times the same patterns
(canonical labeling, DFS with rightmost path expansion)

o FFSM [Wang et al., 2003]
o Uses both pattern extension and a special efficient join operation
@ Gaston [Nijssen and Kok, 2005]

e Works in phases to avoid subgraph isomorphism as much as possible: starts
with simple patterns (paths), used to mine slightly more complex patterns
(trees), then graphs.

o The fastest of the four

Graph pattern mining 0a/01/2021 1623

Pattern-growth algorithms (DFS)

Exercise: DFS search

Data:

Graph pattern mining 0aj0i/2021 1723

Canonical codes

© Canonical codes

Graph pattern mining 0aj0i/2021 1723

Canonical codes

Canonical codes

B X \ X Y
; previous .
tensi uns/merges extend/merge
2 w 2 w Isomorphic!
(i.e. same pattern)

leferent search paths may Iead to the same pattern!

H previous
H exlensluns/merges

How to avoid exploring multiple times the same patterns?
@ Have a generation strategy that limits duplicates
o E.g. always expand from the latest expanded vertex (Mofa, gSpan, ...)
o Does not suffice by itself: see image above
@ Detect if a pattern can be found following another search path

o Naive approach: compare with all generated patterns — infeasible in
reasonable time and memory
o Canonical codes (gSpan, FFSM, Gaston)

Graph pattern mining 0a/01/2021 18/23

Canonical codes

Canonical codes

© Map each graph (2-dimensions) to a code (1-dimension) such that if two
graph have equal codes they are isomorphic
@ Make codes comparable

e The minimum possible code for a graph is called the canonical code of the
graph!

e Same canonical code <= isomorphic graphs

e Canonical code uniquely identifies a graph

@ Only extend patterns on search paths that yield the canonical code for the
pattern

1The maximum could also be used, it's arbitrary

Graph pattern mining 04/01/2021

19/23

Canonical codes

gSpan canonical code

o Code based on DFS construction of the graph (called DFS code)

@ Each edge e = (u, v) added to the graph is represented by a code element

(u, v, I(u), I(e), I(v))

Code
(1,2,X,a,Y)
(2,3,Y,b,X)
(37 1’X7 a’X)
(3,4,X,¢,2)
(4,2,Z,b,Y)
(2,5,Y,d, 2)

Graph pattern mining 0a/01/2021 2023

Canonical codes

gSpan canonical code

(@) (b) (c)
(1,2,X,a,Y) | (1,2,Y,a,X) | (1.2,X,a.X)
(2,3,Y.b,X) | (2,3, X,a,X) | (2.3.X,a,Y)
(3,1,X,a,X) | (3,1,X,b,Y) | (3,1,Y.h,X)
(3,4,X,¢,Z) | (3,4,X,¢,Z) | (3.4,Y,b.2)
(4,2,Z,b,Y) | (4,1,Z,b,Y) | (4.1.Z,¢,X)
(2,5,Y,d,Z2) | (1,5,Y,d,Z) | (3.5,Y.,d.Z)

(a) (b) (c)

@ Same graph can have different DFS codes depending on starting vertices
@ Order defined on codes: lexicographic order of code elements

@ When a pattern is generated during DFS search, decide if it could have a
smaller DFS code. In that case, do not extend the pattern
o It will be extended in the DFS branch where it has a minimal code
o Assumes that the DFS search will eventually visit branches with minimal DFS
code for any pattern

Graph pattern mining 0aj01/2021 2123

Canonical codes

DFS pruning with canonical codes

Data:
a
b a
b a Minimal code (1,2,X,b,X) Minimal code (1,2,X,a,Y)
v
b

Minimal code Minimal code,
(1,2,X,a,Y) (1,2,X,a,Y)

Non-frequent (1,3,X,b,X) (2,3.Y,b,2)

Non-minimal code A
(1,2,X,b,X) (1,3,X,a,Y)
Stop! b b
b
b a a a a
b [.]
Non-frequent Non-frequent

Graph pattern mining 0a/01/2021 22/23

Conclusion

© Conclusion

Graph pattern mining 0aj01/2021 22/23

Conclusion

Conclusion

o Graphs are a generic data structure that allows to express a large quantity of
structured data

@ However, graphs have additional complexity w.r.t. simpler data such as
itemsets and sequential patterns, which can not be ignored when developing
and using graph mining approaches

Pattern matching being a NP-complete subgraph isomorphism problem

Support computation

Recognizing if two graphs are the same (graph isomorphism)

o Existing pattern mining approaches are constructed on the same basis as
itemset mining (Apriori, pattern-growth), but need additional concepts to
avoid too much complexity (e.g. canonical codes)

In pattern mining

The more generic the pattern/data language, the more it allows for expressiveness,
but the more pattern mining tends to be difficult

Graph pattern mining 0a/01/2021 23/23

Conclusion

[d Borgelt, C. and Berthold, M. R. (2002).
Mining molecular fragments: finding relevant substructures of molecules.
In 2002 IEEE International Conference on Data Mining, ICDM 2002.
Proceedings., pages 51-58.

ﬁ Bringmann, B. and Nijssen, S. (2008).
What Is Frequent in a Single Graph?
In Advances in Knowledge Discovery and Data Mining, volume 5012 of
Lecture Notes in Computer Science, pages 858-863. Springer Berlin
Heidelberg.

[§ Gudes, E., Shimony, S. E., and Vanetik, N. (2006).
Discovering Frequent Graph Patterns Using Disjoint Paths.
IEEE Transactions on Knowledge and Data Engineering, 18(11):1441-1456.

ﬁ Inokuchi, A., Washio, T., and Motoda, H. (2000).
An Apriori-Based Algorithm for Mining Frequent Substructures from Graph
Data.
In Principles of Data Mining and Knowledge Discovery, volume 1910 of
Lecture Notes in Computer Science, pages 13-23. Springer Berlin Heidelberg.

[d Kuramochi, M. and Karypis, G. (2001).
Graph pattern mining 04/01/2021 23/23

Conclusion

Frequent subgraph discovery.
In Proceedings 2001 IEEE International Conference on Data Mining, pages
313-320.

ﬁ Kuramochi, M. and Karypis, G. (2004).
Finding Frequent Patterns in a Large Sparse Graph.
In Proceedings of the 2004 SIAM International Conference on Data Mining,
Proceedings, pages 345-356. Society for Industrial and Applied Mathematics.

[@ Nijssen, S. and Kok, J. N. (2005).
The Gaston Tool for Frequent Subgraph Mining.
Electronic Notes in Theoretical Computer Science, 127(1):77-87.

ﬁ Wang, W., Huan, J., and Prins, J. (2003).
Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism.
In Third IEEE International Conference on Data Mining(ICDM), pages
549-552.

[@ Warlein, M., Meinl, T., Fischer, I., and Philippsen, M. (2005).
A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM,
and Gaston.
In Knowledge Discovery in Databases: PKDD 2005, volume 3721 of Lecture
Notes in Computer Science, pages 392—403. Springer Berlin Heidelberg.

Graph pattern mining 0a/01/2021 23/23

Conclusion

[d Yan, X. and Han, J. (2002).
gSpan: Graph-based substructure pattern mining.

In 2002 IEEE International Conference on Data Mining. Proceedings, pages
721-724. |EEE.

Graph pattern mining 0a/01/2021 23/23

	Graphs notions and problem statement
	Graph definitions
	Support in graphs

	Pattern-merging algorithms (Apriori-based, BFS)
	Pattern-growth algorithms (DFS)
	Canonical codes
	Conclusion

