
Graph pattern mining

Francesco Bariatti

francesco.bariatti@irisa.fr

04/01/2021

Francesco Bariatti Graph pattern mining 04/01/2021 1 / 23

mailto:francesco.bariatti@irisa.fr

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 2 / 23

Graphs notions and problem statement

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 2 / 23

Graphs notions and problem statement Graph de�nitions

Graph G = (V ,E): data structure with a set of vertices V and a set of edges
E ⊆ V × V connecting them

Undirected graph: edges (u, v) and (v , u) are the same.
Labeled graph G = (V ,E , l): labeling function l associating labels to vertices
and edges.
Most graph mining approaches focus on undirected labeled graphs.

Graphs are sometimes called networks depending on the domain

Graphs are a powerful and expressive structure to represent data, used in
many domains: molecules, physical networks (telco), social networks, text
corpora, program traces (call graph), semantic web...

Francesco Bariatti Graph pattern mining 04/01/2021 3 / 23

Graphs notions and problem statement Graph de�nitions

(Sub)graph isomorphism

Graphs can appear di�erent but actually have the same structure

Graph isomorphism: recognizing if two graphs are the same

Isomorphism: bijective function mapping vertices of G1 to vertices of G2 so
that edges and labels are preserved

G1 and G2 are isomorphic

Francesco Bariatti Graph pattern mining 04/01/2021 4 / 23

Graphs notions and problem statement Graph de�nitions

(Sub)graph isomorphism

Subgraph isomorphism: recognizing if a graph is part of another graph

A graph G ′ is subgraph isomorphic to a graph G if there exist an injective
function ε ∈ V ′ → V such that ∀e = (u, v) ∈ E ′ (ε(u), ε(v)) ∈ E ;
∀v ∈ V ′ l(ε(v)) = l(v); ∀e ∈ E ′ l(ε(e)) = l(e).
We call ε an embedding or occurrence of G ′ in G

G' is a subgraph of G1

Subgraph isomorphism search is NP-complete!

In practice if labels are diverse enough, it can be computed in reasonable time.
But sometimes data does not play nice

Francesco Bariatti Graph pattern mining 04/01/2021 5 / 23

Graphs notions and problem statement Graph de�nitions

Graph pattern mining

Graph pattern mining is essentially the problem of discovering frequent subgraphs
(patterns) occurring in the input data graph(s).

Find structures describing interesting concepts in the data

Abstract parts of the data as instances of patterns

Learn about the data by looking at what is frequent in it

Francesco Bariatti Graph pattern mining 04/01/2021 6 / 23

Graphs notions and problem statement Support in graphs

What is frequent?

Discovering frequent subgraphs = discovering subgraphs with a support
greater than user-given parameter minsup

Support de�nition depends on the kind of graph data

Base idea similar to other pattern mining domains: �how often is the pattern
found in the input data?�

Two families of graph data:

Graph collection: a (generally large) set of (generally small) graphs.

e.g. molecules, sentences

Single graph: the data is a unique (generally large) graph

e.g. semantic web, social networks� DNA

Francesco Bariatti Graph pattern mining 04/01/2021 7 / 23

Graphs notions and problem statement Support in graphs

What is frequent in a graph collection?

Let D be a graph collection and P a graph pattern,

support(P) =
|{g ∈ D | P is subgraph-isomorphic to g}|

|D|

Each graph of the collection can only contribute once to the support, even if
it has multiple occurrences of the pattern

Francesco Bariatti Graph pattern mining 04/01/2021 8 / 23

Graphs notions and problem statement Support in graphs

What is frequent in a graph collection?

Let D be a graph collection and P a graph pattern,

support(P) =
|{g ∈ D | P is subgraph-isomorphic to g}|

|D|

Each graph of the collection can only contribute once to the support, even if
it has multiple occurrences of the pattern

This measure is anti-monotonic: support of a graph is lower or equal to
support of its subgraphs

Francesco Bariatti Graph pattern mining 04/01/2021 8 / 23

Graphs notions and problem statement Support in graphs

What is frequent in a single graph?

Naive solution

Count how many occurrences the pattern has in the graph.

Naive support is not anti-monotonic

Francesco Bariatti Graph pattern mining 04/01/2021 9 / 23

Graphs notions and problem statement Support in graphs

What is frequent in a single graph?

Overlap-based approaches [Kuramochi and Karypis, 2004]

1 Compute overlap graph of pattern embeddings

2 Support is size of MIS (Maximum Independent Set) of overlap graph

i.e. maximum number of non-overlapping embeddings of the pattern

Overlap-based support is anti-monotonic
MIS computation is NP-complete

Francesco Bariatti Graph pattern mining 04/01/2021 10 / 23

Graphs notions and problem statement Support in graphs

What is frequent in a single graph?

Minimum image based support [Bringmann and Nijssen, 2008]

Let D be a single data graph and P a graph pattern,

support(P) = min
v∈VP

|{ε(v) | ε is an embedding of P in D}|

Minimum image based support is anti-monotonic
Does not need to compute a NP-complete problem

Francesco Bariatti Graph pattern mining 04/01/2021 11 / 23

Pattern-merging algorithms (Apriori-based, BFS)

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 11 / 23

Pattern-merging algorithms (Apriori-based, BFS)

Pattern-merging algorithms

If the support measure is anti-monotonic, for a k-size pattern to be frequent, all
its (k-1)-size elements must be frequent.

Pattern-merging graph mining algorithms work similarly to Apriori:

0 Given Lk the set of k-size frequent patterns
1 Merge compatible k-size patterns to create Ck+1 the set of candidate

(k+1)-size patterns

Compatible k-size patterns: patterns that have a common (k-1)-size core (i.e.
di�er in only one element)

2 Prune Ck+1: only retain patterns whose all (k-1)-size elements are frequent
3 Create Lk+1 by computing support of all patterns in Ck+1

If Lk+1 = ∅, stop

Francesco Bariatti Graph pattern mining 04/01/2021 12 / 23

Pattern-merging algorithms (Apriori-based, BFS)

Main pattern-merging graph mining algorithms:

AGM/AcGM [Inokuchi et al., 2000]
FSG [Kuramochi and Karypis, 2001]
DPMine [Gudes et al., 2006]

Main di�erence is the de�nition of a k-size pattern: k vertices, k edges, k
edge-disjoint paths, . . .

Francesco Bariatti Graph pattern mining 04/01/2021 13 / 23

Pattern-merging algorithms (Apriori-based, BFS)

Drawbacks of pattern-merging approaches

Merging k-size patterns to create (k+1)-size pattern requires �nding patterns
that share a common (k-1)-size core → subgraph isomorphism

Pruning step: need to verify if (k-1)-size elements of a pattern are frequent
→ subgraph isomorphism

Support computation: need to �nd occurrences of pattern → subgraph
isomorphism

Can be skipped by storing information in memory → memory consumption

Breadth-First Search (BFS): need to store all frequent k-size patterns → high
memory consumption

Remember that subgraph isomorphism is NP-complete!

Francesco Bariatti Graph pattern mining 04/01/2021 14 / 23

Pattern-growth algorithms (DFS)

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 14 / 23

Pattern-growth algorithms (DFS)

Pattern-growth algorithms

Solve drawbacks of pattern-merging algorithms:

Expand frequent patterns by looking at possible frequent extensions of their
embeddings

No need to merge patterns → avoid subgraph-isomorphism check: time gain
No need to store all k-size patterns to generate (k+1)-size patterns: memory
gain
Only generate frequent patterns → avoid testing non-frequent candidates:
time gain

Most algorithms in this family use depth-�rst search to generate patterns
→ often called DFS algorithms

Francesco Bariatti Graph pattern mining 04/01/2021 15 / 23

Pattern-growth algorithms (DFS)

Pattern-growth algorithms

Most used/cited pattern-growth algorithms [Wörlein et al., 2005]:

MoFa [Borgelt and Berthold, 2002]

Developed to �nd substructures in collection of molecules
Least e�cient of the four because it generates many times the same patterns

gSpan [Yan and Han, 2002]

The most cited
Introduces techniques to avoid generating multiple times the same patterns
(canonical labeling, DFS with rightmost path expansion)

FFSM [Wang et al., 2003]

Uses both pattern extension and a special e�cient join operation

Gaston [Nijssen and Kok, 2005]

Works in phases to avoid subgraph isomorphism as much as possible: starts
with simple patterns (paths), used to mine slightly more complex patterns
(trees), then graphs.
The fastest of the four

Francesco Bariatti Graph pattern mining 04/01/2021 16 / 23

Pattern-growth algorithms (DFS)

Exercise: DFS search

Francesco Bariatti Graph pattern mining 04/01/2021 17 / 23

Canonical codes

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 17 / 23

Canonical codes

Canonical codes

Di�erent search paths may lead to the same pattern!

How to avoid exploring multiple times the same patterns?

Have a generation strategy that limits duplicates

E.g. always expand from the latest expanded vertex (Mofa, gSpan, ...)
Does not su�ce by itself: see image above

Detect if a pattern can be found following another search path

Naive approach: compare with all generated patterns → infeasible in
reasonable time and memory
Canonical codes (gSpan, FFSM, Gaston)

Francesco Bariatti Graph pattern mining 04/01/2021 18 / 23

Canonical codes

Canonical codes

1 Map each graph (2-dimensions) to a code (1-dimension) such that if two
graph have equal codes they are isomorphic

2 Make codes comparable

The minimum possible code for a graph is called the canonical code of the
graph1

Same canonical code ⇐⇒ isomorphic graphs
Canonical code uniquely identi�es a graph

3 Only extend patterns on search paths that yield the canonical code for the
pattern

1The maximum could also be used, it's arbitrary

Francesco Bariatti Graph pattern mining 04/01/2021 19 / 23

Canonical codes

gSpan canonical code

Code based on DFS construction of the graph (called DFS code)

Each edge e = (u, v) added to the graph is represented by a code element
(u, v , l(u), l(e), l(v))

Code
(1, 2,X , a,Y)
(2, 3,Y , b,X)
(3, 1,X , a,X)
(3, 4,X , c,Z)
(4, 2,Z , b,Y)
(2, 5,Y , d ,Z)

Francesco Bariatti Graph pattern mining 04/01/2021 20 / 23

Canonical codes

gSpan canonical code

(a) (b) (c)
(1, 2,X , a,Y) (1, 2,Y , a,X) (1, 2,X , a,X)
(2, 3,Y , b,X) (2, 3,X , a,X) (2, 3,X , a,Y)
(3, 1,X , a,X) (3, 1,X , b,Y) (3, 1,Y , b,X)
(3, 4,X , c,Z) (3, 4,X , c,Z) (3, 4,Y , b,Z)
(4, 2,Z , b,Y) (4, 1,Z , b,Y) (4, 1,Z , c,X)
(2, 5,Y , d ,Z) (1, 5,Y , d ,Z) (3, 5,Y , d ,Z)

Same graph can have di�erent DFS codes depending on starting vertices

Order de�ned on codes: lexicographic order of code elements

When a pattern is generated during DFS search, decide if it could have a
smaller DFS code. In that case, do not extend the pattern

It will be extended in the DFS branch where it has a minimal code
Assumes that the DFS search will eventually visit branches with minimal DFS
code for any pattern

Francesco Bariatti Graph pattern mining 04/01/2021 21 / 23

Canonical codes

DFS pruning with canonical codes

Francesco Bariatti Graph pattern mining 04/01/2021 22 / 23

Conclusion

1 Graphs notions and problem statement
Graph de�nitions
Support in graphs

2 Pattern-merging algorithms (Apriori-based, BFS)

3 Pattern-growth algorithms (DFS)

4 Canonical codes

5 Conclusion

Francesco Bariatti Graph pattern mining 04/01/2021 22 / 23

Conclusion

Conclusion

Graphs are a generic data structure that allows to express a large quantity of
structured data

However, graphs have additional complexity w.r.t. simpler data such as
itemsets and sequential patterns, which can not be ignored when developing
and using graph mining approaches

Pattern matching being a NP-complete subgraph isomorphism problem
Support computation
Recognizing if two graphs are the same (graph isomorphism)
. . .

Existing pattern mining approaches are constructed on the same basis as
itemset mining (Apriori, pattern-growth), but need additional concepts to
avoid too much complexity (e.g. canonical codes)

In pattern mining

The more generic the pattern/data language, the more it allows for expressiveness,
but the more pattern mining tends to be di�cult

Francesco Bariatti Graph pattern mining 04/01/2021 23 / 23

Conclusion

Borgelt, C. and Berthold, M. R. (2002).
Mining molecular fragments: �nding relevant substructures of molecules.
In 2002 IEEE International Conference on Data Mining, ICDM 2002.
Proceedings., pages 51�58.

Bringmann, B. and Nijssen, S. (2008).
What Is Frequent in a Single Graph?
In Advances in Knowledge Discovery and Data Mining, volume 5012 of
Lecture Notes in Computer Science, pages 858�863. Springer Berlin
Heidelberg.

Gudes, E., Shimony, S. E., and Vanetik, N. (2006).
Discovering Frequent Graph Patterns Using Disjoint Paths.
IEEE Transactions on Knowledge and Data Engineering, 18(11):1441�1456.

Inokuchi, A., Washio, T., and Motoda, H. (2000).
An Apriori-Based Algorithm for Mining Frequent Substructures from Graph
Data.
In Principles of Data Mining and Knowledge Discovery, volume 1910 of
Lecture Notes in Computer Science, pages 13�23. Springer Berlin Heidelberg.

Kuramochi, M. and Karypis, G. (2001).

Francesco Bariatti Graph pattern mining 04/01/2021 23 / 23

Conclusion

Frequent subgraph discovery.
In Proceedings 2001 IEEE International Conference on Data Mining, pages
313�320.

Kuramochi, M. and Karypis, G. (2004).
Finding Frequent Patterns in a Large Sparse Graph.
In Proceedings of the 2004 SIAM International Conference on Data Mining,
Proceedings, pages 345�356. Society for Industrial and Applied Mathematics.

Nijssen, S. and Kok, J. N. (2005).
The Gaston Tool for Frequent Subgraph Mining.
Electronic Notes in Theoretical Computer Science, 127(1):77�87.

Wang, W., Huan, J., and Prins, J. (2003).
E�cient Mining of Frequent Subgraphs in the Presence of Isomorphism.
In Third IEEE International Conference on Data Mining(ICDM), pages
549�552.

Wörlein, M., Meinl, T., Fischer, I., and Philippsen, M. (2005).
A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM,
and Gaston.
In Knowledge Discovery in Databases: PKDD 2005, volume 3721 of Lecture
Notes in Computer Science, pages 392�403. Springer Berlin Heidelberg.

Francesco Bariatti Graph pattern mining 04/01/2021 23 / 23

Conclusion

Yan, X. and Han, J. (2002).
gSpan: Graph-based substructure pattern mining.
In 2002 IEEE International Conference on Data Mining. Proceedings, pages
721�724. IEEE.

Francesco Bariatti Graph pattern mining 04/01/2021 23 / 23

	Graphs notions and problem statement
	Graph definitions
	Support in graphs

	Pattern-merging algorithms (Apriori-based, BFS)
	Pattern-growth algorithms (DFS)
	Canonical codes
	Conclusion

