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Market basket analysis

 Analyse supermarket’s transaction data

 Transaction = « market basket » of a customer

 Find which items are often bought together

 Ex: {bread, chocolate, butter}

 Ex: {hamburger bread, tomato}  {steak}

 Applications

 Product placement

 Cross selling (suggestion of other products)

 Promotions
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Funny example

 Most famous itemset : {beer, diapers}

 Found in a chain of American supermarkets

 Further study :

 Mostly bought on Friday evenings

 Who ? …
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Example

Transactions Items (products bought)

1 bread, butter, chocolate, 

vine, pencil

2 bread,butter, chocolate, 

pencil

3 chocolate

4 butter,chocolate

5 bread, butter, chocolate, 

vine

6 bread,butter, chocolate

 {bread, butter, chocolate} 

sold together in 

4/6 = 66% of transactions

 {butter, chocolate} 

{bread} is true in 

4/5 = 80% of cases

 {chocolate}  {bread, 

butter} is true in 

4/6 = 66% of cases
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Definitions

 A = {a1,…,an} : items, A : item base

 Any I  A : itemset

 k-itemset: itemset with k items

 T = (t1,…,tm), i ti  A : transaction database

 tid(tj)= j : transaction index

 support(X  I) = number of transactions containing itemset X

 tidlist(X  I) = list of tids of transactions containing itemset X

An itemset X is frequent if support(X) ≥ minsup

 Confidence of association rule X  Y :

(X ∩ Y = )

An association rule with confidence c holds if c ≥ minconf
5
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Example, rewritten

Transactions Items (products bought)

1 bread, butter, chocolate, 

vine, pencil

2 bread,butter, chocolate, 

pencil

3 chocolate

4 butter,chocolate

5 bread, butter, chocolate, 

vine

6 bread,butter, chocolate

 {bread, butter, chocolate} 

sold together in 

4/6 = 66% of transactions

 {butter, chocolate} 

{bread} is true in 

4/5 = 80% of cases

 {chocolate}  {bread, 

butter} is true in 

5/6 = 83% of cases
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 {bread, butter, chocolate} 

support = 4 (absolute)

= 4/6 = 66%  (relative)

 {chocolate}  {bread, butter} 

confidence = 4/6 = 66% 

 {butter, chocolate}  {bread} 

confidence = 4/5 = 80%

Alexandre Termier



Computing association rules

 Two steps:

1. Compute frequent itemsets

 Discover itemsets with support ≥ minsup

 Very expensive computationally !

2. Compute which association rules hold

 Partition each itemset and discover rules with 

confidence ≥ minconf

 Much faster than discovering itemsets
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How to compute frequent 

itemsets ?

 Brute force approach

 Generate and Test method

 Generate all possible itemsets randomly

 Compute their support

 But highly combinatorial problem :

 How many possible itemsets for 1000 items ?

  1000 items = 21000 possible itemsets…

 Infeasible in practice
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The Apriori algorithm

 Levelwise search

 Discover frequent 1-itemsets, 2-itemsets,…

Apriori property :

If an itemset is not frequent, then all its supersets are not 

frequent

 Ex: If {vine, pencil} is not frequent, then of course 

{vine, pencil, chocolate} will not be frequent

 Downward closure property

 Anti-monotonicity property 9

[Agrawal et al., 93]
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A B C D E

1 X X X X X

2 X X X X

3 X

4 X X

5 X X X X

6 X X X


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Apriori algorithm

Input: T, minsup

F1 = {Frequent 1-itemsets} ;

for (k=2 ; Fk-1 ≠  ; k++) do begin

Ck = apriori-gen(Fk-1) ; // Candidates generation

foreach transaction t  T do begin

Ct = subset(Ck, t) ; // Support counting

foreach candidate c  Ct do

c.count++ ;

end

Fk = { c  Ck | c.count ≥ minsup } ;

end

return kFk ;
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Candidate generation

 apriori-gen: generates candidates k-itemsets from frequent 

(k-1)-itemsets

 c (size k) = merge of p, q  Fk-1 (both have size k-1)

  p and q have exactly k-2 items in common

 How many combinations of such p,q to build c ?

 ways (at most) to derive c from Fk-1

 This is redundant work: we want a unique (p,q) for c

 Solution: ordering of the items in itemsets

 Usually items are represented by integers : classical order of 

 k-2 prefixes of p and q must match
12
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A B C D E
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2 X X X X

3 X

4 X X

5 X X X X

6 X X X
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apriori-gen

Input: Fk-1

// Join step

insert into Ck
select p.item1,p.item2,…,p.itemk-1,q.itemk-1
from p,q  Fk-1
where p.item1 = q.item1,…,p.itemk-2=q.itemk-2, 

p.itemk-1<q.itemk-1
// Prune step

foreach itemset c  Ck do

foreach (k-1)-subset s of c do

if (s  Fk-1) then

delete c from Ck ;

return Ck
14
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Subset

 For each transaction t, find all the itemsets of Ck

that are in t

 Brute force :
 foreach tT

foreach c  Ck
compute if ct

 Too much computation !

 The Apriori solution:

 Partition candidates into different buckets of limited size

 Store buckets in leaves of a hash tree

 Find candidates subset of a transaction by traversing 

hash tree 15
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Hash tree construction 
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abc abd abe 

acd ace bcd 

bce

Max bucket size = 3

Bucket too big ! Bucket too big !

abc abd abe 

acd ace 
bcd bce

h(b)h(a)

Hash on first item

abc abd abe 

bcd bce

h(b)h(a)

Hash on first item

acd ace 

Hash on 2nd item

h(b) h(c)

C3 in previous example
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Hash tree utilisation for subset
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abc abd abe 

bcd bce

h(b)h(a)

acd ace 

h(b) h(c)

Transaction 2’ : a c d e

a c d e

c d e

acd

ace
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Complexity

 apriori_gen, step k
 Dominated by prune step  O(k.|Ck|)

 support counting

  O(m.|Ck|) with m = |T| (database size)

  one iteration is  O(m.|Ck|)

 Total complexity :
  O(m.k|Ck|)

 Worst case : candidates are all possible itemsets

  O(m.2n)   with n = number of items

  Linear in database size

  Exponential in number of items

 Influence of transaction width (database density) on number 

of traversal of hash tree
18
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Association rules computation

 Once we have the frequent itemsets, we want the association rules.

 Reminder: we are only interested in rules that have a high 

confidence value

 Let F be an itemset, with |F| = k.

How many possible rules ?

 2k – 2   (we eliminate F  {} and {}  F)

 What is a naive solution to compute them ?

 For each partitions of F in X  Y

 compute confidence of X  Y

 output X  Y if confidence  minconf

 Is it efficient ?

19
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Monotony of confidence ?

Transactions Items (products bought)

1 bread, butter, chocolate, 

vine, pencil

2 bread,butter, chocolate, 

pencil

3 chocolate

4 butter,chocolate

5 bread, butter, chocolate, 

vine

6 bread,butter, chocolate

7 butter

8 butter

9 butter
20

 {chocolate}  {bread, butter} 

confidence = 4/6 = 66% 

 {chocolate}  {butter} 

confidence = 5/6 = 83%

 {butter}  {chocolate} 

confidence = 5/8 = 62%

Alexandre Termier

CONFIDENCE IS NOT MONOTONE / 

ANTI-MONOTONE



More on monotony of 

confidence

 For rules coming from the same itemset, 
confidence is anti-monotone

 e.g., L = {A,B,C,D}:

c(ABC  D)  c(AB  CD)  c(A  BCD)

 Confidence is anti-monotone w.r.t. number of items 
on the RHS of the rule

  some pruning is possible



Association rule generation 

algorithm

Input: T, minsup, minconf, Fall = union of F1..Fn

H1 = 

foreach fk  Fall, k2 do begin

A = (k-1)-itemsets ak-1 such that ak-1  fk ; 

foreach ak-1  A do begin

conf = support(fk)/support(ak-1) ;

if conf  minconf do begin

output rule ak-1  (fk – ak-1) ;

add (fk – ak-1) to H1 ;

end

end

ap-genrules(fk, H1) ;

end



ap-genrules

Input: fk, Hm : set of m-item consequents

if (k>m+1) then begin

Hm+1 = apriori-gen(Hm) ; // Generate all possible m+1 
itemsets

foreach hm+1  Hm+1 do begin

conf = support(fk)/support(fk-hm+1) ;

if conf  minconf then 

output rule fk – hm+1  hm+1 ;

else

delete hm+1 from Hm+1 ; 

end

ap-genrules(fk, Hm+1) ;

end

Pruning by anti-monotony



First improvements of Apriori

 End of 90’s : 

 Main memory: 64-256 MB

 Databases: can go over 1 GB

 Apriori : several passes over database…

  need algorithms that can handle database in memory

 Partition [Savasere et al. 1995]

 Cut the database in pieces fitting into memory, compute results 

for each piece and join them

 Sampling [Toivonen 1996]

 Compute frequent itemsets on a sample of the database

 DIC [Brin et al. 1997]

 Improves number of passes on database
24
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Maximal frequent itemsets

Set of maximal frequent itemsets :

MFI = { IFI | I’ I  I’FI}    

with FI set of frequent itemsets

 Several orders of magnitudes less MFI than FI

 Can be searched both bottom-up and top-

down

 Pincer-Search [Lin & Kedem 1998]

Max-Miner [Bayardo et al. 1998]

 BUT loss of information
25
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The Eclat algorithm

 Apriori : DB is in horizontal format

 Eclat introduces the vertical format

 Itemset x  tid-list(x)

27

[Zaki et al., 97]

A B C D E

1 X X X X X

2 X X X X

3 X

4 X X

5 X X X X

6 X X X

A

1

2

5

6

B

1

2

4

5

6

C

1

2

3

4

5

6

D

1

5

E

1

2

Horizontal format Vertical format
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Vertical format

 Support counting can be done with tid-list intersections

 I,J itemsets : tidlist(IJ) = tidlist(I) ∩ tidlist(J)

 No need for costly subset tests, hash tree generation…

 Problem

 If database is big, tidlists of the many candidates created will be 

big also, and will not hold in memory

 Solution

 Partition the lattice into equivalence classes

 In Eclat : equivalence relation = sharing the same prefix

28
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Eclat algorithm

Input: T, minsup

compute L1 and L2 // like apriori

Transform T in vertical representation

CE2 = Decompose L2 in equivalence classes

forall E2CE2 do

compute_frequent(E2)

end forall 

return kFk ;
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compute_frequent(Ek-1)

forall itemsets I1 and I2 in Ek-1 do

if |tidlist(I1)∩tidlist(I2)| ≥ minsup then

Lk  Lk{I1I2}

end if

end forall

CEk = Decompose Lk in equivalence classes

forall EkCEk do

compute_frequent(Ek)

end forall

47
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The FP-growth approach

 FP-Growth : Frequent Pattern Growth

 No candidate generation

 Compress transaction database into FP-tree

(Frequent Pattern Tree)

 Extended prefix-tree

 Recursive processing of conditional 

databases

 Can be one order of magnitude faster than 

Apriori
48
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FP-tree

 Compact structure for representing DB and frequent itemsets

1. Composed of : 

 root

 item-prefix subtrees

 frequent-item-header array

2. Node =

 item-name 

 count  // number of transactions containing path reaching this node

 node-link  // next node having same item-name

3. Entry in frequent-item-header array =

 item-name

 head of node-link // pointer to first node having item-name

 Both an horizontal (prefix-tree) and a vertical (node links) structure 49
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FP-tree example (1/2)

A B C D E F

A B C E

C

B C

A B C D

A B C

FP-tree example (1/2)

Original transaction 

database

C : 6

B : 5

A : 4

D : 2

E : 2

F : 1

Items ordered by 

frequency

C B A D E

C B A E

C

C B

C B A D

C B A

Transactions 

reordered by item 

frequency

(infrequent item F

pruned)

C

C B

C B A

C B A D

C B A D E

C B A E

Transactions sorted 

lexicographically

minsup = 2

50
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FP-tree example (2/2)

51

C

C B

C B A

C B A D

C B A D E

C B A E

C:6 B:5 A:4

D:2

E:1

E:1

C:6 B:5 A:4 D:2 E:2

Frequent-item-header array

Transactions sorted 

lexicographically

Prefix-tree structure

FP-tree
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Exercise

 Draw the FP-tree for the following DB :

(minsup = 3)

52

A D F

A C D E

B D

B C D

B C

A B D

B D E

B C E G

C D F

A B D
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FP-Growth
FP-growth(FP, prefix)

foreach frequent item x in increasing order of frequency do

prefix = prefix  x

Dx = 

countx = 0

foreach node-link nlx of x do

Dx = Dx  {transaction of path reaching x, with 
count for each item = nlx.count, without x}

countx += nlx.count

end

if countx ≥ minsup then 

output (prefix  x)

FPx = FP-tree constructed from Dx
FP-growth(FPx, prefix)

end if

end 55
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FP-Growth example

56

C:6 B:5 A:4

D:2

E:1

E:1C : 6

B : 5

A : 4

D : 2

E : 2

Alexandre Termier

Original FP-tree

Start with item E (lowest support)

C:6 B:5 A:4

D:2

E:1

E:1 countE= 1+1 = 2

 E is frequent

 Output E

C:2 B:2 A:2

D:1

E:1

E:1

Conditional FP-tree for E

• update counts

 only transactions containing E

• drop E



Alexandre Termier
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C:2 B:2 A:2

D:1

FP-Growth example (cont.)
Conditional FP-tree for E

D not frequent here

 do not consider DE

Loop on AE, BE, CE

C:2 B:2 A:2

For AE :

countAE= 2

 AE is frequent

 Output AE

Conditional FP-tree for AE:

C:2 B:2

For BAE :

C:2 B:2

countBAE= 2

 BAE is frequent

 Output BAE

Conditional FP-tree for BAE:

C:2

For CBAE :

C:2

countCBAE= 2

 CBAE is frequent

 Output CBAE

The rest is left as exercise…
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Problems of frequent itemsets

 Large computation time

 For low support values, huge number of 

frequent itemsets

 Lots of redundant information

Alexandre Termier

59

Simple example:

Tid Transaction

1 A B C D

2 A B C 

3 A B C E

minsup = 2

FIS Support tidlist

A B C 3 {1,2,3}

A B 3 {1,2,3}

A C 3 {1,2,3}

B C 3 {1,2,3}

A 3 {1,2,3}

B 3 {1,2,3}

C 3 {1,2,3}

FIS Support Tidlist

A B C 3 {1,2,3}

R
E

D
U

N
D

A
N

T



Closed frequent itemsets

 We have seen that there is loss of information with 

maximal frequent itemsets

 Lets consider equivalence classes for frequent itemsets 

sharing the same tidlist

 The closed frequent itemsets are the maximums of these 

equivalence classes

Set of closed frequent itemsets :

CFI = { IFI | I’FI tq tidlist(I’)=tidlist(I) I’  I}    

with FI set of frequent itemsets

Alexandre Termier
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 Sets are ordered by inclusion: MFI  CFI  FI

[Pasquier et al., 99]
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1 X X X X X

2 X X X X

3 X
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6 X X X
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Computing closed frequent 

itemsets

 Brute force (frequent pattern base)

 Enumerate all the frequent patterns

 Output only closed ones

 Most of the time : inefficient

 Exception: if |FI| is very small

 Closure base

 Compute only closed patterns with closure 

operations

 Can be very efficient

63
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Efficient computation

 First algorithms (Closet, Charm,…)

 Candidate-based method

 Try to compute as many non-closed frequent itemsets as 

possible

 OR Closure Extension: add an item to an existing closed 

frequent itemset, and take closure

 Keep in memory all closed frequent itemsets found so far

 → Need a lot of memory during execution

 Reverse search (LCM)

 Depth First Search algorithm so no global memory needed

 Fast computation time, Little memory usage

Alexandre Termier
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Closure Extension of Itemset

・ Usual backtracking does not work for closed itemsets,

because there are possibly big gap between closed 
itemsets

・ On the other hand, any closed itemset

is obtained from another by 

“add an item and

take closure (maximal)”

- closure of P is the closed itemset 

having the same denotation to P,

and computed by taking intersection of Occ(P)

This is an adjacency structure defined on closed itemsets, thus we can 

perform graph search on it, with using memory 

φ

1,31,2

1,2,3 1,2,4 1,3,4 2,3,4

1 2 3 4

3,42,41,4 2,3

1,2,3,4



Reverse Search

 Uno and Arimura found that the closed frequent itemsets 

are organized in a directed spanning tree

  they can be visited by DFS

  from a node of the tree, need of a transition function

to compute its children

Alexandre Termier
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: Closed frequent 

itemsets

: transition function



Tree of closed frequent itemsets

 Search space of CFIS = lattice = DAG

 DAG → Tree : impose order of exploration

 Order need to:
 follow enumeration strategy

 be inexpensive to enforce

 Order of Arimura and Uno

 CFIS P, Q

 Q children of P if all items of Q < maxitem(P)
Alexandre Termier
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Pseudo-code

Alexandre Termier
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Database Reductions

Conditional database is to reduce database by unnecessary items 
and transactions, for deeper levels

3
5

5 6

1,3,5

1,3,5

1,3,5

1,2,5,6

1,4,6

1,2,6

3,5

3,5

3,5

5,6

6

6

θ = 3

Remove infrequent items,

items included in all

filtering filtering

Unify same transactions

3,5 ×3

5,6

6 ×2

6

1

Remove infrequent items,

automatically unified

FP-tree, prefix tree

Linear time

O(||D||log ||D||) time

Compact if database is 

dense and large



Prize for the Award

Prize is {beer, diapers}  

“Most Frequent Itemset” 


