
1

Symbolic Verification of
Distance-bounding Protocols

Alexandre Debant

Université de Lorraine, CNRS, Inria, LORIA,

Seminar at LIRMM
February 12th 2021

Application to payments protocols

Auch + Toulouse:
Bac + classe prépa

ENS Rennes

EPFL
Stage : preuve de

programmes Scala
(Viktor Kuncak)

IRISA - INRIA Rennes
Thèse : preuve de protocoles

(Stéphanie Delaune)

Univ. Birmingham
Visite : collab. avec Tom Chothia

INRIA Nancy
Post-doc avec Véronique Cortier

2

Introduction

3

Introduction

3

Sensitive data
+ wireless communications ⇒ risks of attacks

Many applications

4

Passport Wi-Fi

Transport
ticketing Credit card

Many applications
that are insecure….

4

Passport Wi-Fi

Transport
ticketing Credit card

[Chothia et al. - 2010] [Vanhoef et al. - 2017]

[Nohl et al. - 2008] [Murdoch et al. - 2010]

Cryptographic protocols

5

Cryptographic primitives

Protocols - how messages are exchanged?

encryption/decryption

digital signature

hash function

zero-knowledge proof

Cryptographic protocols

5

Cryptographic primitives

Protocols - how messages are exchanged?

encryption/decryption

digital signature

hash function

zero-knowledge proof

Cryptography is useless
if misused!

6

Two major families of models…
… with some advantages and some drawbacks.

Computational models

Symbolic models

+
−

+
−

messages are bitstrings, a general and powerful attacker

tedious proofs, sometimes mechanized, but often hand-written

Some abstractions (messages, attacker…)

procedures and automated tools

Some results make a link between these two models

[Abadi & Rogaway - 2000]

Symbolic verification
in a nutshell

7

Messages

- Function symbols: , , ,…

- Equations:

#$%(x, k) &'($(x, k))(x)
*#%(#$%(x, k), k) = x

Protocols
- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels

Symbolic verification
in a nutshell

7

Messages

- Function symbols: , , ,…

- Equations:

#$%(x, k) &'($(x, k))(x)
*#%(#$%(x, k), k) = x

Perfect cryptography

Protocols
- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels

Existing verification tools

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

8

Existing verification tools

Unbounded number of sessions

ProVerif

‣ undecidable in general

‣ efficient tools in practice but:

‣ do some approximations

‣ may not terminate

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

8

Existing verification tools

Unbounded number of sessions

ProVerif

‣ undecidable in general

‣ efficient tools in practice but:

‣ do some approximations

‣ may not terminate

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

5G-AKA
Belenios e-voting

8

9

Proving the
physical proximity

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

+#,*#- .,-*
k k

start clock

stop clock

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

+#,*#- .,-*
k k

start clock

stop clock

Proving the
physical proximity

9

Related work in symbolic verification
- Standard models and tools: do not model time

 and locations!

- Main specific models:

‣ Meadows et al. (2007),

‣ Basin et al. (2011)

➡ no automated verification procedure…

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

+#,*#- .,-*
k k

start clock

stop clock

Related work in symbolic verification
- Standard models and tools: do not model time

 and locations!

- Main specific models:

‣ Meadows et al. (2007),

‣ Basin et al. (2011)

➡ no automated verification procedure…

Can we design a framework that allows for a
fully automated verification?

Proving the
physical proximity

9

Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

The story of verification

10

Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

New tools

The story of verification

10

Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

The story of verification

New tools

10

Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

Reduction results to
leverage existing tools

The story of verification

New tools
3. Considering one topology is sufficient

4. The reduced topology can be

encoded in ProVerif

10

5. Apply the tools and prove their
efficiency in practiceCase studies

Symbolic model

Reduction results to
leverage existing tools

The story of verification

New tools

Case studies

10

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be

encoded in ProVerif

11

A symbolic model

with time and locations

syntax and semantics

12

SPADE
[Bultel et al. - 2016]

c

r

/#-'0'#- 1-23#-
k k

start clock

stop clock

,#$%(⟨nP, σ⟩, 67(V))

pick fresh nP
σ = &'($(np, &&7(P))

check signature,
pick , freshmV nV ⟨mV, nV⟩

 H0 = 6-0(nP, nV)
H1 = nP ⊕ mV ⊕ H0

6-0(nP, nV, mV, c, r)

r = ,$&(c, H0, H1)

Term algebra
Messages: terms built over a set of names and a

signature given with either an equational theory or a

rewriting system.

9
Σ ;

Example
‣ Function symbols:

‣ Rules:

,#$%, ,*#%, 67, &7, &'($, (#<_=#&&,(#, &67, &&7,
⟨ ⋅ , ⋅ ⟩, 6-2?1, 6-2?2

(#<_=#&&,(#(&'($(x, &&7(y)), &67(y)) → x
6-2?1(⟨x, y⟩) → x
6-2?2(⟨x, y⟩) → y

#A(x, x) → ok

,*#%(,#$%(x, 67(y)), &7(y)) → x

Running example

V(v, p) = '$(x) .
B#< u = ,*#%(x, &7(v)) '$
B#< xok = #A(6-2?C(u), (#<_=#&&,(#(6-2?D(u), &67(P)) '$
…

/#-'0'#-
k

check signature,
pick , freshmV nV

,#$%(⟨nP, σ⟩, 67(V))

13

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

P := 0
| $#E n . P
| B#< x = u '$ P
| 2F<(u) . P
| '$(x) . P

The role of each agent is described by a process following the grammar:

14

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

 guarded input

 personal clock reset

P := 0
| $#E n . P
| B#< x = u '$ P
| 2F<(u) . P
| '$(x) . P
| '$<t(x) . P
| -#&#< . P

The role of each agent is described by a process following the grammar:

14

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

 guarded input

 personal clock reset

P := 0
| $#E n . P
| B#< x = u '$ P
| 2F<(u) . P
| '$(x) . P
| '$<t(x) . P
| -#&#< . P

The role of each agent is described by a process following the grammar:

Running example

V(v, p) = '$(x) .
B#< u = ,*#%(x, &7(v)) '$
B#< xok = #A(6-2?C(u), (#<_=#&&,(#(6-2?D(u), &67(P)) '$
$#E mV . $#E nV .
2F<(⟨mV, nV⟩) .
-#&#< . $#E c . 2F<(c) . '$<t(y) .
'$(z) . …

/#-'0'#-
k

start clock

stop clock

check signature,
pick , freshmV nV

14

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 H2% : I → ℝ3

J'&<(a, b) = ∥H2%(a) − H2%(b)∥
c

15

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 H2% : I → ℝ3

J'&<(a, b) = ∥H2%(a) − H2%(b)∥
c

System configuration

‣ : multiset of processes which remain to execute, i.e.

‣ : frame made of the output messages so far, i.e.

‣ : current global time

(L, Φ, t)
L
Φ w a,ta u
t

15

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 H2% : I → ℝ3

J'&<(a, b) = ∥H2%(a) − H2%(b)∥
c

System configuration

‣ : multiset of processes which remain to execute, i.e.

‣ : frame made of the output messages so far, i.e.

‣ : current global time

(L, Φ, t)
L
Φ w a,ta u
t

Execution rules

‣ : with

‣ :

‣ :

 if is deducible from at time

‣ …

TIM (L, Φ, t) ⟶ (O)'0<(L, δ), Φ, t + δ) δ > 0
OUT (⌊2F<(u) . P⌋ta

a ⊎ L, Φ, t) a,2F<(u) (⌊P⌋ta
a ⊎ L, Φ ∪ {w a,t u}, t)

IN (⌊'$(x) . P⌋ta
a ⊎ L, Φ, t) a,'$(u) (⌊P{x ↦ u}⌋ta

a ⊎ L, Φ, t)
u Φ t

15

16

Distance fraud/hijacking attack

An honest verifier shall not authenticate a malicious and distant prover

v0p0

 [Desmedt -1988]

16

Distance fraud/hijacking attack

An honest verifier shall not authenticate a malicious and distant prover
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988] [Cremers et al. - 2012]

16

Distance fraud/hijacking attack

Definition
A protocol admits a distance hĳacking attack if there exists a topology

 and an initial configuration such that:

U ∈ WJX K
K ⟶ (⌊#$*(v0, p0)⌋

tv0
v0

; Φ ; t)

An honest verifier shall not authenticate a malicious and distant prover
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988] [Cremers et al. - 2012]

17

Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover
even in presence of an attacker in his vicinity.

 [Desmedt et al. -1987]

17

Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover
even in presence of an attacker in his vicinity.

Definition

A protocol admits a mafia fraud if there exists a topology

and an initial configuration such that:

U ∈ WYZ
K

K ⟶ (⌊#$*(v0, p0)⌋
tv0
v0

; Φ ; t)

 [Desmedt et al. -1987]

18

Some reduction results

Topologies and time

19

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

p0 v0
ip iv

t0

Ut0
MF

p0 v0
e0

t0

Ut0
DH

19

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

p0 v0
ip iv

t0

Ut0
MF

p0 v0
e0

t0

Ut0
DH

2. We must deal with time when conducting our analyses

19

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

p0 v0
ip iv

t0

Ut0
MF

p0 v0
e0

t0

Ut0
DH

2. We must deal with time when conducting our analyses
 —> we can use ProVerif’s phases to encode the topologies!

19

Mafia frauds

20

Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

p0 v0
ip iv

t0

Ut0
MF

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

p0 v0
ip iv

t0

Ut0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0
ip iv

t0

Ut0
MFAn attack trace

in an arbitrary
topology

20

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

p0 v0
ip iv

t0

Ut0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0

p0 v0
ip iv

t0

Ut0
MFAn attack trace

in an arbitrary
topology

Assume

everyone
malicious

20

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

p0 v0
ip iv

t0

Ut0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

Ut0
MFAn attack trace

in an arbitrary
topology

Assume

everyone
malicious

Place malicious
agents ideally

20

[Nigam et al. - 2016]

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

Ut0
MFAn attack trace

in an arbitrary
topology

Shorten the
distance

Assume

everyone
malicious

Place malicious
agents ideally

20

[Nigam et al. - 2016]

Distance hijacking attacks

21

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Distance hijacking attacks

21

Remark: the previous proof does not apply!

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Distance hijacking attacks

21

Remark: the previous proof does not apply!

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Distance hijacking attacks

21

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Distance hijacking attacks

21

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Action re-ordering

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Distance hijacking attacks

21

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

p0 v0
e0

t0

Action re-ordering

Re-timing
the witness

Theorem

If admits a distance hĳacking attack, then admits an attack in . L*[L*[Ut0
DH

p0 v0
e0

t0

Ut0
DH

Getting rid of time

22

Even a single topology cannot be modeled into existing tools

Getting rid of time

22

Phase 2

Phase 0

Phase 1

/#-'0'#- 1-23#-
k k

Even a single topology cannot be modeled into existing tools

Encoding the two topologies with phases
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif

‣ Phase 0 slow initialization phase

‣ Phase 1 rapid phase

‣ Phase 2 slow verification phase

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶

Getting rid of time

22

Encoding the two topologies with phases
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif

‣ Phase 0 slow initialization phase

‣ Phase 1 rapid phase

‣ Phase 2 slow verification phase

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶ Phase 2

Phase 0

Phase 1

/#-'0'#- 1-23#-
k k

Proposition

If a protocol admits a mafia fraud (resp. distance hĳacking, terrorist fraud)

then is reachable in .

L*[
#$*(v0, p0) ℱ(L*[)

Even a single topology cannot be modeled into existing tools

23

A comprehensive case

studies analysis

Application to

distance-bounding protocols

24

Case studies analyses

Corpus

Tool

+25 protocols

ProVerif (slightly modified for distance hijacking attacks)

tool limitation

model
limitation

Abstractions ‣ rapid phase collapsed in a single round-trip

‣ weak exclusive-OR

Application to real-world protocols

Protocols Mafia fraud Distance hijacking Terrorist fraud

MasterCard RRP ✓ ✗ ✗

PaySafe ✓ ✗ ✗

MIFARE Plus ✓ ✗ ✗

25

Conclusion

26

Finally we have…

Case studies

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies
5. Apply the tools and prove their

efficiency in practice

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be

encoded in ProVerif

10

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Finally we have…

For a bounded
number of sessions

5. Apply the tools and prove their
efficiency in practice

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be

encoded in ProVerif

27

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

Improve the model of time
‣ consider computation time

‣ design procedures for unbounded #sessions

27

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

Model bit-level operations
‣ consider probabilistic processes and properties

‣ model messages with bitstrings

27

Improve the model of time
‣ consider computation time

‣ design procedures for unbounded #sessions

