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Sensitive data  
+ wireless communications ⇒ risks of attacks



Many applications

4

Passport Wi-Fi

Transport  
ticketing Credit card



Many applications 
that are insecure….
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Passport Wi-Fi

Transport  
ticketing Credit card

[Chothia et al. - 2010] [Vanhoef et al. - 2017]

[Nohl et al. - 2008] [Murdoch et al. - 2010]



Cryptographic protocols
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Cryptographic primitives

Protocols - how messages are exchanged?

encryption/decryption

digital signature

hash function

zero-knowledge proof
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Cryptographic primitives

Protocols - how messages are exchanged?

encryption/decryption

digital signature

hash function

zero-knowledge proof

Cryptography is useless 
if misused!
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Two major families of models…
… with some advantages and some drawbacks.

Computational models

Symbolic models

+
−

+
−

messages are bitstrings, a general and powerful attacker 

tedious proofs, sometimes mechanized, but often hand-written

Some abstractions (messages, attacker…)

procedures and automated tools

Some results make a link between these two models

[Abadi & Rogaway - 2000]



Symbolic verification  
in a nutshell
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Messages 

- Function symbols: , , ,…


- Equations: 

#$%(x, k) &'($(x, k) )(x)
*#%(#$%(x, k), k) = x

Protocols 
- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels
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Messages 

- Function symbols: , , ,…


- Equations: 

#$%(x, k) &'($(x, k) )(x)
*#%(#$%(x, k), k) = x

Perfect cryptography

Protocols 
- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels



Existing verification tools

Bounded number of sessions

‣  decidable for classes of protocols


‣  tools implement decision procedures


AKiSs
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Existing verification tools

Unbounded number of sessions

ProVerif

‣  undecidable in general


‣  efficient tools in practice but:

‣  do some approximations

‣  may not terminate

Bounded number of sessions

‣  decidable for classes of protocols


‣  tools implement decision procedures


AKiSs

5G-AKA
Belenios e-voting
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Proving the  
physical proximity

History of distance-bounding protocols 
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 

challenge

response

+#,*#- .,-*
k k

start clock

stop clock
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Related work in symbolic verification 
- Standard models and tools: do not model time

                                                   and locations!

- Main specific models: 


‣ Meadows et al. (2007),

‣ Basin et al. (2011)


➡  no automated verification procedure…




History of distance-bounding protocols 
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 

challenge

response

+#,*#- .,-*
k k

start clock

stop clock

Related work in symbolic verification 
- Standard models and tools: do not model time

                                                   and locations!

- Main specific models: 


‣ Meadows et al. (2007),

‣ Basin et al. (2011)


➡  no automated verification procedure…


Can we design a framework that allows for a 
fully automated verification?

Proving the  
physical proximity
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Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

The story of verification
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Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

Reduction results to 
leverage existing tools

The story of verification

New tools
3. Considering one topology is sufficient

4. The reduced topology can be 

encoded in ProVerif
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5. Apply the tools and prove their 
efficiency in practiceCase studies

Symbolic model

Reduction results to 
leverage existing tools

The story of verification

New tools

Case studies
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1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be 

encoded in ProVerif
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A symbolic model  

with time and locations 

syntax and semantics
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SPADE  
[Bultel et al. - 2016]

c

r

/#-'0'#- 1-23#-
k k

start clock

stop clock

,#$%(⟨nP, σ⟩, 67(V ))

pick  fresh nP
σ = &'($(np, &&7(P))

check signature, 
pick ,  freshmV nV ⟨mV, nV⟩

 H0 = 6-0(nP, nV)
H1 = nP ⊕ mV ⊕ H0

6-0(nP, nV, mV, c, r)

r = ,$&(c, H0, H1)



Term algebra
Messages: terms built over a set of names  and a

signature  given with either an equational theory  or a 

rewriting system.
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Σ ;

Example  
‣ Function symbols:   

                                         
‣ Rules: 

,#$%, ,*#%, 67, &7, &'($, (#<_=#&&,(#, &67, &&7,
⟨ ⋅ , ⋅ ⟩, 6-2?1, 6-2?2

(#<_=#&&,(#(&'($(x, &&7(y)), &67(y)) → x
6-2?1(⟨x, y⟩) → x
6-2?2(⟨x, y⟩) → y

#A(x, x) → ok

,*#%(,#$%(x, 67(y)), &7(y)) → x

Running example 



                   

                   

                 

V(v, p) = '$(x) .
B#< u = ,*#%(x, &7(v)) '$
B#< xok = #A(6-2?C(u), (#<_=#&&,(#(6-2?D(u), &67(P)) '$
…

/#-'0'#-
k

check signature, 
pick ,  freshmV nV

,#$%(⟨nP, σ⟩, 67(V ))
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Process algebra

                                    null process

                       name restriction


           conditional declaration

                      output


                         input


P := 0
| $#E n . P
| B#< x = u '$ P
| 2F<(u) . P
| '$(x) . P

The role of each agent is described by a process following the grammar:

14
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| '$(x) . P
| '$<t(x) . P
| -#&#< . P

The role of each agent is described by a process following the grammar:

Running example 



                 

                 

                 

                 

                 

                 

V(v, p) = '$(x) .
B#< u = ,*#%(x, &7(v)) '$
B#< xok = #A(6-2?C(u), (#<_=#&&,(#(6-2?D(u), &67(P)) '$
$#E mV . $#E nV .
2F<(⟨mV, nV⟩) .
-#&#< . $#E c . 2F<(c) . '$<t(y) .
'$(z) . …

/#-'0'#-
k

start clock

stop clock

check signature, 
pick ,  freshmV nV

14



Semantics
Physical restrictions 

‣ locations: elements in , i.e. 

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 H2% : I → ℝ3

J'&<(a, b) = ∥H2%(a) − H2%(b)∥
c

15
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Semantics
Physical restrictions 

‣ locations: elements in , i.e. 

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 H2% : I → ℝ3

J'&<(a, b) = ∥H2%(a) − H2%(b)∥
c

System configuration  

‣ : multiset of processes which remain to execute, i.e. 


‣ : frame made of the output messages so far, i.e. 


‣ : current global time 

(L, Φ, t)
L
Φ w a,ta u
t

Execution rules 

‣ :  with 


‣ : 


‣ :  

                          if  is deducible from  at time  


‣ …

TIM (L, Φ, t) ⟶ (O)'0<(L, δ), Φ, t + δ) δ > 0
OUT (⌊2F<(u) . P⌋ta

a ⊎ L, Φ, t) a,2F<(u) (⌊P⌋ta
a ⊎ L, Φ ∪ {w a,t u}, t)

IN (⌊'$(x) . P⌋ta
a ⊎ L, Φ, t) a,'$(u) (⌊P{x ↦ u}⌋ta

a ⊎ L, Φ, t)
u Φ t

15
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Distance fraud/hijacking attack

An honest verifier shall not authenticate a malicious and distant prover  

v0p0

 [Desmedt -1988]
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Distance fraud/hijacking attack

An honest verifier shall not authenticate a malicious and distant prover  
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988]  [Cremers et al. - 2012]
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Distance fraud/hijacking attack

Definition
A protocol admits a distance hĳacking attack if there exists a topology 

 and an initial configuration  such that: 

 

U ∈ WJX K
K ⟶ (⌊#$*(v0, p0)⌋

tv0
v0

; Φ ; t)

An honest verifier shall not authenticate a malicious and distant prover  
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988]  [Cremers et al. - 2012]
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Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover  
even in presence of an attacker in his vicinity.

 [Desmedt et al. -1987]
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Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover  
even in presence of an attacker in his vicinity.

Definition

A protocol admits a mafia fraud if there exists a topology  

and an initial configuration  such that: 
 

U ∈ WYZ
K

K ⟶ (⌊#$*(v0, p0)⌋
tv0
v0

; Φ ; t)

 [Desmedt et al. -1987]
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Some reduction results 

Topologies and time
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Main difficulties 

1. An infinite number of topologies must be considered for each 
class of attacks 
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Main difficulties 

1. An infinite number of topologies must be considered for each 
class of attacks 

      —> it is sufficient to focus on a unique topology for each class!

p0 v0
ip iv

t0

Ut0
MF

p0 v0
e0

t0

Ut0
DH

2. We must deal with time when conducting our analyses 
      —> we can use ProVerif’s phases to encode the topologies!
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Mafia frauds
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Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

p0 v0
ip iv

t0

Ut0
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[Nigam et al. - 2016]
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Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .Ut0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4
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p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

Ut0
MFAn attack trace 

in an arbitrary 
topology

Shorten the 
distance

Assume 

everyone 
malicious

Place malicious 
agents ideally

20

[Nigam et al. - 2016]



Distance hijacking attacks
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Theorem

If  admits a distance hĳacking attack, then  admits an attack in .    L*[ L*[ Ut0
DH

p0 v0
e0

t0

Ut0
DH
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Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack
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Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace 
in an arbitrary 
topology

p0 v0
e0

t0

Action re-ordering

Re-timing 
the witness

Theorem

If  admits a distance hĳacking attack, then  admits an attack in .    L*[ L*[ Ut0
DH
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t0

Ut0
DH
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Phase 2

Phase 0

Phase 1

/#-'0'#- 1-23#-
k k

Even a single topology cannot be modeled into existing tools 

Encoding the two topologies with phases 
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif


‣  Phase 0  slow initialization phase  

‣  Phase 1  rapid phase 

‣  Phase 2  slow verification phase 

➡ Remote agents do not act in phase 1! 

⟶
⟶
⟶
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Encoding the two topologies with phases 
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif


‣  Phase 0  slow initialization phase  

‣  Phase 1  rapid phase 

‣  Phase 2  slow verification phase 

➡ Remote agents do not act in phase 1! 

⟶
⟶
⟶ Phase 2

Phase 0

Phase 1

/#-'0'#- 1-23#-
k k

Proposition 

If a protocol  admits a mafia fraud (resp. distance hĳacking, terrorist fraud) 

then  is reachable in . 

L*[
#$*(v0, p0) ℱ(L*[)

Even a single topology cannot be modeled into existing tools 
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A comprehensive case 

studies analysis 

Application to 

distance-bounding protocols
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Case studies analyses

Corpus 

Tool

+25 protocols


ProVerif (slightly modified for distance hijacking attacks)

tool limitation

model 
limitation

Abstractions ‣ rapid phase collapsed in a single round-trip

‣ weak exclusive-OR 

Application to real-world protocols

Protocols Mafia fraud Distance hijacking Terrorist fraud

MasterCard RRP ✓ ✗ ✗

PaySafe ✓ ✗ ✗

MIFARE Plus ✓ ✗ ✗
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Conclusion 
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Finally we have…

Case studies

Symbolic model

Reduction results to 
leverage existing toolsNew tools

Case studies
5. Apply the tools and prove their 

efficiency in practice

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be 

encoded in ProVerif



10

Symbolic model
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For a bounded 
number of sessions

5. Apply the tools and prove their 
efficiency in practice
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2. Formally define the security properties
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4. The reduced topology can be 

encoded in ProVerif
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Symbolic model

Reduction results to 
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR 
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin 

Remove hypotheses in the theorems

Model bit-level operations 
‣ consider probabilistic processes and properties 

‣ model messages with bitstrings

27

Improve the model of time 
‣ consider computation time

‣ design procedures for unbounded #sessions


