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Introduction

Scenario
Eve, a dishonest agent, wants to buy an item but without paying it! 

Existing solutions 

‣ Steal the item…


‣ Steal a credit card: by-pass the PIN code, pay on the Internet, contactlessly…


‣ Abuse a victim by relaying messages using the contactless technology

EveAlice
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Proving the  
physical proximity

History of distance-bounding protocols 
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 
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k k
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History of distance-bounding protocols 
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock
Designing a good 

protocol is difficult!



Many applications 
that are insecure….
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Passport Wi-Fi

Transport  
ticketing Credit card

[Chothia et al. - 2010] [Vanhoef et al. - 2017]

[Nohl et al. - 2008] [Murdoch et al. - 2010]
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Two major families of models…
… with some advantages and some drawbacks.

Computational models

Symbolic models

+
−

+
−

messages are bitstrings, a general and powerful attacker 

tedious proofs, sometimes mechanized, but often for experts only

Some simplifications/abstractions (messages, attacker…)

procedures and automated tools

Some results make a link between these two models

[Abadi & Rogaway - 2000]



Symbolic verification  
in a nutshell
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Messages 

- Function symbols: , , ,…


- Equations: 

𝚎𝚗𝚌(x, k) 𝚜𝚒𝚐𝚗(x, k) 𝚑(x)

𝚍𝚎𝚌(𝚎𝚗𝚌(x, k), k) = x
Perfect cryptography

Protocols 

- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels



Existing verification tools

Bounded number of sessions

‣  decidable for classes of protocols


‣  tools implement decision procedures


AKiSs
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Existing verification tools

Unbounded number of sessions

ProVerif

‣  undecidable in general


‣  efficient tools in practice but:


‣  do some approximations


‣  may not terminate

Bounded number of sessions

‣  decidable for classes of protocols


‣  tools implement decision procedures


AKiSs

5G-AKA
Belenios e-voting
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History of distance-bounding protocols 
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 
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Proving the  
physical proximity
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Related work in symbolic verification 
- Standard models and tools: do not model 

      time and locations!


- Main specific models: 

‣ Meadows et al. (2007),

‣ Basin et al. (2011)


➡  no automated verification procedure…
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- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016 

challenge
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k k

start clock
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Can we design a framework that allows for a 
fully automated verification?

Proving the  
physical proximity
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Related work in symbolic verification 
- Standard models and tools: do not model 

      time and locations!


- Main specific models: 

‣ Meadows et al. (2007),

‣ Basin et al. (2011)


➡  no automated verification procedure…

- Recently: Mauw et. al. (2018, 2019) 
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5. Apply the tools and prove their 
efficiency in practiceCase studies

Symbolic model

The story of verification
1. Syntax and semantics for describing protocols


2. Formally define the security properties
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Reduction results to 
leverage existing tools

3. Considering one topology is sufficient


4. The reduced topology can be 
encoded in ProVerif
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A symbolic model  

with time and locations 

syntax and semantics
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SPADE  
[Bultel et al. - 2016]

c

r

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

start clock

stop clock

𝚊𝚎𝚗𝚌(⟨nP, σ⟩, 𝚙𝚔(V ))

pick  fresh nP
σ = 𝚜𝚒𝚐𝚗(np, 𝚜𝚜𝚔(P))

check signature, 
pick ,  freshmV nV ⟨mV, nV⟩

 H0 = 𝚙𝚛𝚏(nP, nV)
H1 = nP ⊕ mV ⊕ H0

𝚙𝚛𝚏(nP, nV, mV, c, r)

r = 𝚊𝚗𝚜(c, H0, H1)



Term algebra
Messages: terms built over a set of names  and a

signature  given with either an equational theory  or a 

rewriting system.

𝒩
Σ 𝙴

Example  
‣ Function symbols:   

                                         
‣ Rules: 

𝚊𝚎𝚗𝚌, 𝚊𝚍𝚎𝚌, 𝚙𝚔, 𝚜𝚔, 𝚜𝚒𝚐𝚗, 𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎, 𝚜𝚙𝚔, 𝚜𝚜𝚔,
⟨ ⋅ , ⋅ ⟩, 𝚙𝚛𝚘𝚓1, 𝚙𝚛𝚘𝚓2

𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎(𝚜𝚒𝚐𝚗(x, 𝚜𝚜𝚔(y)), 𝚜𝚙𝚔(y)) → x

𝚙𝚛𝚘𝚓1(⟨x, y⟩) → x

𝚙𝚛𝚘𝚓2(⟨x, y⟩) → y

𝚎𝚚(x, x) → ok

𝚊𝚍𝚎𝚌(𝚊𝚎𝚗𝚌(x, 𝚙𝚔(y)), 𝚜𝚔(y)) → x

Running example 



                   

                   

                 

V(v, p) = 𝚒𝚗(x) .
𝚕𝚎𝚝 u = 𝚊𝚍𝚎𝚌(x, 𝚜𝚔(v)) 𝚒𝚗
𝚕𝚎𝚝 xok = 𝚎𝚚(𝚙𝚛𝚘𝚓𝟷(u), 𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎(𝚙𝚛𝚘𝚓𝟸(u), 𝚜𝚙𝚔(P)) 𝚒𝚗
…

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛
k

check signature, 
pick ,  freshmV nV

𝚊𝚎𝚗𝚌(⟨nP, σ⟩, 𝚙𝚔(V ))
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Process algebra

                                    null process

                       name restriction


           conditional declaration

                      output


                         input


P := 0
| 𝚗𝚎𝚠 n . P
| 𝚕𝚎𝚝 x = u 𝚒𝚗 P
| 𝚘𝚞𝚝(u) . P
| 𝚒𝚗(x) . P

The role of each agent is described by a process following the grammar:

13
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𝚗𝚎𝚠 mV . 𝚗𝚎𝚠 nV .
𝚘𝚞𝚝(⟨mV, nV⟩) .
𝚛𝚎𝚜𝚎𝚝 . 𝚗𝚎𝚠 c . 𝚘𝚞𝚝(c) . 𝚒𝚗<t(y) .
𝚒𝚗(z) . …

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛
k

start clock

stop clock

check signature, 
pick ,  freshmV nV
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Semantics
Physical restrictions 

‣ locations: elements in , i.e. 

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

14



Semantics
Physical restrictions 

‣ locations: elements in , i.e. 

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

System configuration  

‣ : multiset of processes which remain to execute, i.e. 


‣ : frame made of the output messages so far, i.e. 


‣ : current global time 

(𝒫, Φ, t)
𝒫
Φ w

a,ta u
t

14



Semantics
Physical restrictions 

‣ locations: elements in , i.e. 

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

System configuration  

‣ : multiset of processes which remain to execute, i.e. 


‣ : frame made of the output messages so far, i.e. 


‣ : current global time 

(𝒫, Φ, t)
𝒫
Φ w

a,ta u
t

Execution rules 

‣ :  with 


‣ : 


‣ :  

                          if  is deducible from  at time  


‣ …

TIM (𝒫, Φ, t) ⟶ (𝚂𝚑𝚒𝚏𝚝(𝒫, δ), Φ, t + δ) δ > 0

OUT (⌊𝚘𝚞𝚝(u) . P⌋ta
a ⊎ 𝒫, Φ, t) a,𝚘𝚞𝚝(u) (⌊P⌋ta

a ⊎ 𝒫, Φ ∪ {w a,t u}, t)

IN (⌊𝚒𝚗(x) . P⌋ta
a ⊎ 𝒫, Φ, t) a,𝚒𝚗(u) (⌊P{x ↦ u}⌋ta

a ⊎ 𝒫, Φ, t)
u Φ t

14
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even in presence of an attacker in his vicinity.
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Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover  
even in presence of an attacker in his vicinity.

Definition

A protocol admits a mafia fraud if there exists a topology  

and an initial configuration  such that: 
 

𝒯 ∈ 𝒞𝙼𝙵

K
K ⟶ (⌊𝚎𝚗𝚍(v0, p0)⌋

tv0
v0

; Φ ; t)

 [Desmedt et al. -1987]
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Distance hijacking attack

An honest verifier shall not authenticate a malicious and distant prover  
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988]  [Cremers et al. - 2012]
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Distance hijacking attack

Definition
A protocol admits a distance hĳacking attack if there exists a topology 

 and an initial configuration  such that: 

 

𝒯 ∈ 𝒞𝙳𝙷 K
K ⟶ (⌊𝚎𝚗𝚍(v0, p0)⌋

tv0
v0

; Φ ; t)

An honest verifier shall not authenticate a malicious and distant prover  
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988]  [Cremers et al. - 2012]
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Some reduction results 

Topologies and time
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Main difficulties 

1. An infinite number of topologies must be considered for each 
class of attacks 

      —> it is sufficient to focus on a unique topology for each class!

2. We must deal with time when conducting our analyses 
      —> we can use ProVerif’s phases to encode the topologies!
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t0

𝒯t0
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p0 v0
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t0

𝒯t0
DH
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Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

𝒯t0
MFAn attack trace 

in an arbitrary 
topology

Shorten the 
distance

Assume 

everyone 
malicious

Place malicious 
agents ideally

[Nigam et al. - 2016]
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An attack trace 
in an arbitrary 
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Action re-ordering

Re-timing 
the witness

Theorem
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Getting rid of time

Phase 2

Phase 0

Phase 1

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

Even a single topology cannot be modeled into existing tools 

Encoding the two topologies with phases 
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif


‣  Phase 0  slow initialization phase  

‣  Phase 1  rapid phase 

‣  Phase 2  slow verification phase 

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶
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➡ it relies on the phases of ProVerif


‣  Phase 0  slow initialization phase  

‣  Phase 1  rapid phase 

‣  Phase 2  slow verification phase 

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶ Phase 2

Phase 0

Phase 1

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

Proposition 

If a protocol  admits a mafia fraud (resp. distance hĳacking, terrorist fraud) 

then  is reachable in . 

𝒫𝚍𝚋

𝚎𝚗𝚍(v0, p0) ℱ(𝒫𝚍𝚋)

Even a single topology cannot be modeled into existing tools 

21



22

A comprehensive case 

studies analysis 

Application to 


distance-bounding protocols
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Case studies analyses

Corpus 

Tool

+25 protocols


ProVerif (slightly modified for distance hijacking attacks)

tool limitation

model 
limitation

Abstractions ‣ rapid phase collapsed in a single round-trip


‣ weak exclusive-OR 

Application to real-world protocols

Protocols Mafia fraud Distance hijacking Terrorist fraud

MasterCard RRP ✓ ✗ ✗

PaySafe ✓ ✗ ✗

MIFARE Plus ✓ ✗ ✗
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Conclusion 
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Finally we have…

Case studies

Symbolic model

Reduction results to 
leverage existing tools

5. Apply the tools and prove their 
efficiency in practice

1. Syntax and semantics for describing protocols


2. Formally define the security properties
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