
1

Symbolic Verification of
Distance-bounding Protocols

Alexandre Debant1, Stéphanie Delaune2, Cyrille Wiedling3

1Université de Lorraine, CNRS, Inria, LORIA,

2Univ Rennes, CNRS, IRISA,
3DGA-MI, Bruz

FM Seminar
April 6th 2021

Application to payments protocols

Introduction

2

Scenario
Eve, a dishonest agent, wants to buy an item but without paying it!

Introduction

2

Scenario
Eve, a dishonest agent, wants to buy an item but without paying it!

Existing solutions

‣ Steal the item…

Introduction

2

Scenario
Eve, a dishonest agent, wants to buy an item but without paying it!

Existing solutions

‣ Steal the item…

‣ Steal a credit card: by-pass the PIN code, pay on the Internet, contactlessly…

Introduction

Scenario
Eve, a dishonest agent, wants to buy an item but without paying it!

Existing solutions

‣ Steal the item…

‣ Steal a credit card: by-pass the PIN code, pay on the Internet, contactlessly…

‣ Abuse a victim by relaying messages using the contactless technology

EveAlice

2

3

Proving the
physical proximity

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock

3

Proving the
physical proximity

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock
Designing a good

protocol is difficult!

Many applications
that are insecure….

4

Passport Wi-Fi

Transport
ticketing Credit card

[Chothia et al. - 2010] [Vanhoef et al. - 2017]

[Nohl et al. - 2008] [Murdoch et al. - 2010]

5

Two major families of models…
… with some advantages and some drawbacks.

Computational models

Symbolic models

+
−

+
−

messages are bitstrings, a general and powerful attacker

tedious proofs, sometimes mechanized, but often for experts only

Some simplifications/abstractions (messages, attacker…)

procedures and automated tools

Some results make a link between these two models

[Abadi & Rogaway - 2000]

Symbolic verification
in a nutshell

6

Messages

- Function symbols: , , ,…

- Equations:

𝚎𝚗𝚌(x, k) 𝚜𝚒𝚐𝚗(x, k) 𝚑(x)

𝚍𝚎𝚌(𝚎𝚗𝚌(x, k), k) = x
Perfect cryptography

Protocols

- Process algebra, multiset rewriting rules, Horn clauses…

The attacker can… The attacker cannot…

read / overwrite messages

intercept / block messages

break crypto

use side-channels

Existing verification tools

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

7

Existing verification tools

Unbounded number of sessions

ProVerif

‣ undecidable in general

‣ efficient tools in practice but:

‣ do some approximations

‣ may not terminate

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

7

Existing verification tools

Unbounded number of sessions

ProVerif

‣ undecidable in general

‣ efficient tools in practice but:

‣ do some approximations

‣ may not terminate

Bounded number of sessions

‣ decidable for classes of protocols

‣ tools implement decision procedures

AKiSs

5G-AKA
Belenios e-voting

7

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock

Proving the
physical proximity

8

Related work in symbolic verification
- Standard models and tools: do not model

 time and locations!

- Main specific models:

‣ Meadows et al. (2007),

‣ Basin et al. (2011)

➡ no automated verification procedure…

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock

Can we design a framework that allows for a
fully automated verification?

Proving the
physical proximity

8

Related work in symbolic verification
- Standard models and tools: do not model

 time and locations!

- Main specific models:

‣ Meadows et al. (2007),

‣ Basin et al. (2011)

➡ no automated verification procedure…

History of distance-bounding protocols
- First: Brands and Chaum protocol (1993)

- Today: more than 40 new protocols since 2003

- Application: in EMV’s specification since 2016

challenge

response

𝚁𝚎𝚊𝚍𝚎𝚛 𝙲𝚊𝚛𝚍
k k

start clock

stop clock

Can we design a framework that allows for a
fully automated verification?

Proving the
physical proximity

8

Related work in symbolic verification
- Standard models and tools: do not model

 time and locations!

- Main specific models:

‣ Meadows et al. (2007),

‣ Basin et al. (2011)

➡ no automated verification procedure…

- Recently: Mauw et. al. (2018, 2019)

Symbolic model

The story of verification

9

1. Syntax and semantics for describing protocols

2. Formally define the security properties

Symbolic model
1. Syntax and semantics for describing protocols

2. Formally define the security properties

Reduction results to
leverage existing tools

The story of verification

3. Considering one topology is sufficient

4. The reduced topology can be
encoded in ProVerif

9

5. Apply the tools and prove their
efficiency in practiceCase studies

Symbolic model

The story of verification
1. Syntax and semantics for describing protocols

2. Formally define the security properties

9

Reduction results to
leverage existing tools

3. Considering one topology is sufficient

4. The reduced topology can be
encoded in ProVerif

10

A symbolic model

with time and locations

syntax and semantics

11

SPADE
[Bultel et al. - 2016]

c

r

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

start clock

stop clock

𝚊𝚎𝚗𝚌(⟨nP, σ⟩, 𝚙𝚔(V))

pick fresh nP
σ = 𝚜𝚒𝚐𝚗(np, 𝚜𝚜𝚔(P))

check signature,
pick , freshmV nV ⟨mV, nV⟩

 H0 = 𝚙𝚛𝚏(nP, nV)
H1 = nP ⊕ mV ⊕ H0

𝚙𝚛𝚏(nP, nV, mV, c, r)

r = 𝚊𝚗𝚜(c, H0, H1)

Term algebra
Messages: terms built over a set of names and a

signature given with either an equational theory or a

rewriting system.

𝒩
Σ 𝙴

Example
‣ Function symbols:

‣ Rules:

𝚊𝚎𝚗𝚌, 𝚊𝚍𝚎𝚌, 𝚙𝚔, 𝚜𝚔, 𝚜𝚒𝚐𝚗, 𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎, 𝚜𝚙𝚔, 𝚜𝚜𝚔,
⟨ ⋅ , ⋅ ⟩, 𝚙𝚛𝚘𝚓1, 𝚙𝚛𝚘𝚓2

𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎(𝚜𝚒𝚐𝚗(x, 𝚜𝚜𝚔(y)), 𝚜𝚙𝚔(y)) → x

𝚙𝚛𝚘𝚓1(⟨x, y⟩) → x

𝚙𝚛𝚘𝚓2(⟨x, y⟩) → y

𝚎𝚚(x, x) → ok

𝚊𝚍𝚎𝚌(𝚊𝚎𝚗𝚌(x, 𝚙𝚔(y)), 𝚜𝚔(y)) → x

Running example

V(v, p) = 𝚒𝚗(x) .
𝚕𝚎𝚝 u = 𝚊𝚍𝚎𝚌(x, 𝚜𝚔(v)) 𝚒𝚗
𝚕𝚎𝚝 xok = 𝚎𝚚(𝚙𝚛𝚘𝚓𝟷(u), 𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎(𝚙𝚛𝚘𝚓𝟸(u), 𝚜𝚙𝚔(P)) 𝚒𝚗
…

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛
k

check signature,
pick , freshmV nV

𝚊𝚎𝚗𝚌(⟨nP, σ⟩, 𝚙𝚔(V))

12

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

P := 0
| 𝚗𝚎𝚠 n . P
| 𝚕𝚎𝚝 x = u 𝚒𝚗 P
| 𝚘𝚞𝚝(u) . P
| 𝚒𝚗(x) . P

The role of each agent is described by a process following the grammar:

13

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

 guarded input

 personal clock reset

P := 0
| 𝚗𝚎𝚠 n . P
| 𝚕𝚎𝚝 x = u 𝚒𝚗 P
| 𝚘𝚞𝚝(u) . P
| 𝚒𝚗(x) . P
| 𝚒𝚗<t(x) . P
| 𝚛𝚎𝚜𝚎𝚝 . P

The role of each agent is described by a process following the grammar:

13

Process algebra

 null process

 name restriction

 conditional declaration

 output

 input

 guarded input

 personal clock reset

P := 0
| 𝚗𝚎𝚠 n . P
| 𝚕𝚎𝚝 x = u 𝚒𝚗 P
| 𝚘𝚞𝚝(u) . P
| 𝚒𝚗(x) . P
| 𝚒𝚗<t(x) . P
| 𝚛𝚎𝚜𝚎𝚝 . P

The role of each agent is described by a process following the grammar:

Running example

V(v, p) = 𝚒𝚗(x) .
𝚕𝚎𝚝 u = 𝚊𝚍𝚎𝚌(x, 𝚜𝚔(v)) 𝚒𝚗
𝚕𝚎𝚝 xok = 𝚎𝚚(𝚙𝚛𝚘𝚓𝟷(u), 𝚐𝚎𝚝_𝚖𝚎𝚜𝚜𝚊𝚐𝚎(𝚙𝚛𝚘𝚓𝟸(u), 𝚜𝚙𝚔(P)) 𝚒𝚗
𝚗𝚎𝚠 mV . 𝚗𝚎𝚠 nV .
𝚘𝚞𝚝(⟨mV, nV⟩) .
𝚛𝚎𝚜𝚎𝚝 . 𝚗𝚎𝚠 c . 𝚘𝚞𝚝(c) . 𝚒𝚗<t(y) .
𝚒𝚗(z) . …

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛
k

start clock

stop clock

check signature,
pick , freshmV nV

13

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

14

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

System configuration

‣ : multiset of processes which remain to execute, i.e.

‣ : frame made of the output messages so far, i.e.

‣ : current global time

(𝒫, Φ, t)
𝒫
Φ w

a,ta u
t

14

Semantics
Physical restrictions

‣ locations: elements in , i.e.

‣ distance: Euclidean norm between locations, i.e.

‣ message transmission: a message takes time to reach its destination

ℝ3 𝙻𝚘𝚌 : 𝒜 → ℝ3

𝙳𝚒𝚜𝚝(a, b) =
∥𝙻𝚘𝚌(a) − 𝙻𝚘𝚌(b)∥

c

System configuration

‣ : multiset of processes which remain to execute, i.e.

‣ : frame made of the output messages so far, i.e.

‣ : current global time

(𝒫, Φ, t)
𝒫
Φ w

a,ta u
t

Execution rules

‣ : with

‣ :

‣ :

 if is deducible from at time

‣ …

TIM (𝒫, Φ, t) ⟶ (𝚂𝚑𝚒𝚏𝚝(𝒫, δ), Φ, t + δ) δ > 0

OUT (⌊𝚘𝚞𝚝(u) . P⌋ta
a ⊎ 𝒫, Φ, t) a,𝚘𝚞𝚝(u) (⌊P⌋ta

a ⊎ 𝒫, Φ ∪ {w a,t u}, t)

IN (⌊𝚒𝚗(x) . P⌋ta
a ⊎ 𝒫, Φ, t) a,𝚒𝚗(u) (⌊P{x ↦ u}⌋ta

a ⊎ 𝒫, Φ, t)
u Φ t

14

15

Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover
even in presence of an attacker in his vicinity.

 [Desmedt et al. -1987]

15

Mafia fraud (MiM attacks)

v0p0

An honest verifier shall not authenticate an honest and distant prover
even in presence of an attacker in his vicinity.

Definition

A protocol admits a mafia fraud if there exists a topology

and an initial configuration such that:

𝒯 ∈ 𝒞𝙼𝙵

K
K ⟶ (⌊𝚎𝚗𝚍(v0, p0)⌋

tv0
v0

; Φ ; t)

 [Desmedt et al. -1987]

16

Distance hijacking attack

An honest verifier shall not authenticate a malicious and distant prover
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988] [Cremers et al. - 2012]

16

Distance hijacking attack

Definition
A protocol admits a distance hĳacking attack if there exists a topology

 and an initial configuration such that:

𝒯 ∈ 𝒞𝙳𝙷 K
K ⟶ (⌊𝚎𝚗𝚍(v0, p0)⌋

tv0
v0

; Φ ; t)

An honest verifier shall not authenticate a malicious and distant prover
even in the presence of honest participants in his vicinity.

v0p0

 [Desmedt -1988] [Cremers et al. - 2012]

17

Some reduction results

Topologies and time

18

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

18

p0 v0
ip iv

t0

𝒯t0
MF

p0 v0
e0

t0

𝒯t0
DH

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

2. We must deal with time when conducting our analyses

18

p0 v0
ip iv

t0

𝒯t0
MF

p0 v0
e0

t0

𝒯t0
DH

Main difficulties

1. An infinite number of topologies must be considered for each
class of attacks

 —> it is sufficient to focus on a unique topology for each class!

2. We must deal with time when conducting our analyses
 —> we can use ProVerif’s phases to encode the topologies!

18

p0 v0
ip iv

t0

𝒯t0
MF

p0 v0
e0

t0

𝒯t0
DH

Mafia frauds

19

Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

p0 v0
ip iv

t0

𝒯t0
MF

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

p0 v0
ip iv

t0

𝒯t0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0
ip iv

t0

𝒯t0
MFAn attack trace

in an arbitrary
topology

19

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

p0 v0
ip iv

t0

𝒯t0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0

p0 v0
ip iv

t0

𝒯t0
MFAn attack trace

in an arbitrary
topology

Assume

everyone
malicious

19

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

p0 v0
ip iv

t0

𝒯t0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

𝒯t0
MFAn attack trace

in an arbitrary
topology

Assume

everyone
malicious

Place malicious
agents ideally

[Nigam et al. - 2016]

19

Mafia frauds
Theorem

A protocol admits a mafia fraud, if and only if, there is an attack in .𝒯t0
MF

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0

p0 v0

a1

a3

a2

a4

t0 p0 v0
ip iv

t0

p0 v0
ip iv

t0

𝒯t0
MFAn attack trace

in an arbitrary
topology

Shorten the
distance

Assume

everyone
malicious

Place malicious
agents ideally

[Nigam et al. - 2016]

19

Distance hijacking attacks

20

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

Distance hijacking attacks

Remark: the previous proof does not apply!

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

20

Distance hijacking attacks

Remark: the previous proof does not apply!

Sketch of proof:

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

20

Distance hijacking attacks

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

20

Distance hijacking attacks

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

Action re-ordering

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

20

Distance hijacking attacks

Remark: the previous proof does not apply!

Sketch of proof:

Untimed witness of attack Untimed witness of attack

p0 v0

a1

a3

a2

a4

t0
An attack trace
in an arbitrary
topology

p0 v0
e0

t0

Action re-ordering

Re-timing
the witness

Theorem

If admits a distance hĳacking attack, then admits an attack in . 𝒫𝚍𝚋 𝒫𝚍𝚋 𝒯t0
DH

p0 v0
e0

t0

𝒯t0
DH

20

Getting rid of time

21

Even a single topology cannot be modeled into existing tools

Getting rid of time

Phase 2

Phase 0

Phase 1

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

Even a single topology cannot be modeled into existing tools

Encoding the two topologies with phases
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif

‣ Phase 0 slow initialization phase

‣ Phase 1 rapid phase

‣ Phase 2 slow verification phase

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶

21

Getting rid of time

Encoding the two topologies with phases
[Chothia et al. - 2015]

➡ it relies on the phases of ProVerif

‣ Phase 0 slow initialization phase

‣ Phase 1 rapid phase

‣ Phase 2 slow verification phase

➡ Remote agents do not act in phase 1!

⟶
⟶
⟶ Phase 2

Phase 0

Phase 1

𝚅𝚎𝚛𝚒𝚏𝚒𝚎𝚛 𝙿𝚛𝚘𝚟𝚎𝚛
k k

Proposition

If a protocol admits a mafia fraud (resp. distance hĳacking, terrorist fraud)

then is reachable in .

𝒫𝚍𝚋

𝚎𝚗𝚍(v0, p0) ℱ(𝒫𝚍𝚋)

Even a single topology cannot be modeled into existing tools

21

22

A comprehensive case

studies analysis

Application to

distance-bounding protocols

23

Case studies analyses

Corpus

Tool

+25 protocols

ProVerif (slightly modified for distance hijacking attacks)

tool limitation

model
limitation

Abstractions ‣ rapid phase collapsed in a single round-trip

‣ weak exclusive-OR

Application to real-world protocols

Protocols Mafia fraud Distance hijacking Terrorist fraud

MasterCard RRP ✓ ✗ ✗

PaySafe ✓ ✗ ✗

MIFARE Plus ✓ ✗ ✗

24

Conclusion

25

Finally we have…

Case studies

Symbolic model

Reduction results to
leverage existing tools

5. Apply the tools and prove their
efficiency in practice

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be
encoded in ProVerif

25

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Finally we have…

For a bounded
number of sessions

[Debant & Delaune - 2019]

5. Apply the tools and prove their
efficiency in practice

1. Syntax and semantics for describing protocols

2. Formally define the security properties

3. Considering one topology is sufficient

4. The reduced topology can be
encoded in ProVerif

26

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Remove hypotheses in the theorems

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

26

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

Improve the model of time
‣ consider computation time

‣ design procedures for unbounded #sessions

26

Future work

Symbolic model

Reduction results to
leverage existing toolsNew tools

Case studies Case studies

Make the existing tools support exclusive-OR
‣ extend ProVerif’s procedure

‣ improve automation for Tamarin

Remove hypotheses in the theorems

Model bit-level operations
‣ consider probabilistic processes and properties

‣ model messages with bitstrings

Improve the model of time
‣ consider computation time

‣ design procedures for unbounded #sessions

26

