Proving physical proximity using symbolic models

Alexandre Debant, Stéphanie Delaune, Cyrille Wielding

Univ Rennes - IRISA - CNRS

2018-07-08

Applications

Introduction

Cryptographic protocols

Distributed programs that use cryptographic primitives to ensure security properties.

secrecy

authentication

integrity

untraceability

Applications

Introduction

Cryptographic protocols

Distributed programs that use cryptographic primitives to ensure security properties.

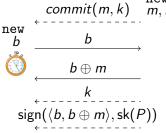
secrecy

authentication

integrity

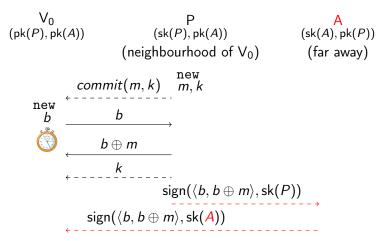
physical proximity

Example: Brands and Chaum - 1993



Brands and Chaum protocol

Example: Brands and Chaum - 1993



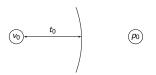
Attack against Brands and Chaum protocol

Applications

Classes of attacks

$\begin{array}{l} \mbox{Mafia frauds - } \mathcal{C}_{\mbox{MF}} \\ \mbox{(or Man-in-the-Middle)} \end{array}$

- V₀ is honest
- P₀ is honest

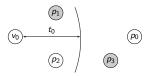


Applications

Classes of attacks

$\begin{array}{l} \mbox{Mafia frauds} - \mathcal{C}_{\mbox{MF}} \\ \mbox{(or Man-in-the-Middle)} \end{array}$

- V₀ is honest
- P₀ is honest



Applications

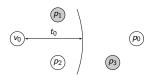
Classes of attacks

$\begin{array}{l} \mbox{Mafia frauds} - \mathcal{C}_{\mbox{MF}} \\ \mbox{(or Man-in-the-Middle)} \end{array}$

- V₀ is honest
- P₀ is honest

Distance hijacking - \mathcal{C}_{DH}

- V_0 is honest
- P₀ is dishonest
- no dishonest agents close to V₀



Applications

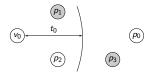
Classes of attacks

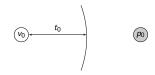
$\begin{array}{l} \mbox{Mafia frauds} - \mathcal{C}_{\mbox{MF}} \\ \mbox{(or Man-in-the-Middle)} \end{array}$

- V₀ is honest
- P₀ is honest

Distance hijacking - \mathcal{C}_{DH}

- V_0 is honest
- P₀ is **dishonest**
- no dishonest agents close to V₀





Applications

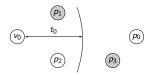
Classes of attacks

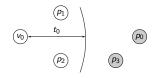
$\begin{array}{l} \mbox{Mafia frauds} - \mathcal{C}_{\mbox{MF}} \\ \mbox{(or Man-in-the-Middle)} \end{array}$

- V₀ is honest
- P₀ is honest

Distance hijacking - \mathcal{C}_{DH}

- V_0 is honest
- P₀ is dishonest
- no dishonest agents close to V₀





Applications

Contributions

Reduction results

Consider 1 topology is enough to prove Mafia fraud or Distance hijacking resistance!

Applications

Contributions

Reduction results

Consider 1 topology is enough to prove Mafia fraud or Distance hijacking resistance!

Getting rid of topologies and time

- modelling in ProVerif using phases
- application to well-known DB protocols

Symbolic model

Reduction results

Applications

Table of contents

Distance bounding protocols

Symbolic model

Reduction results

Applications

Symbolic verification

Advantages:

- automated proofs
- efficient tools exist: ProVerif, Tamarin, Avispa...
- can express many security properties (authentication, secrecy, untraceability...)
- But: cannot express physical proximity ! omniscient and ubiquitous attacker

How can we handle it?

Term algebra

Messages: terms built over a set of names ${\cal N}$ and a signature Σ given with either an equational theory E or a rewriting system

Example

- Names: $\mathcal{N} = \{a, n, k\}$
- Signature: $\Sigma = \{senc, sdec, pair, proj_1, proj_2, \oplus\}$

$$\begin{array}{ll} x \oplus 0 = x & (x \oplus y) \oplus z = x \oplus (y \oplus z) \\ x \oplus x = 0 & x \oplus y = y \oplus x \end{array}$$

$$sdec(senc(x, y), y)
ightarrow x \qquad proj_1(pair(x, y))
ightarrow x \ proj_2(pair(x, y))
ightarrow y$$

<u>We have that:</u> $sdec(senc(n \oplus 0), k), k) \downarrow =_{xor} n$

Process algebra

The role of an agent is described by a process following the grammar:

Ρ	:=	0	null
		new n.P	name restriction
		let x = u in P	conditional declaration
		out(u).P	output
		in(x).P	input

Process algebra

The role of an agent is described by a process following the grammar:

Ρ	:=	0	null
		new n.P	name restriction
		let $x = u$ in P	conditional declaration
		out(u).P	output
		in(x).P	input
		in ^{<t< sup="">(x).P</t<>}	guarded input
		reset.P	personal clock reset

Process algebra

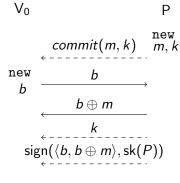
The role of an agent is described by a process following the grammar:

Ρ	:=	0	null
		new n.P	name restriction
		let x = u in P	conditional declaration
		out(u).P	output
		in(x).P	input
		in ^{<t< sup="">(x).P</t<>}	guarded input
		reset.P	personal clock reset

Protocol

A protocol is a set of roles (Π_1, \dots, Π_k) describing the behaviour of each honest agents.

Example: Brands and Chaum - 1993

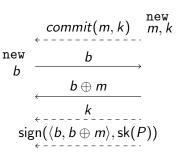


Ρ

Example: Brands and Chaum - 1993

$$\begin{split} V(z_V, z_P) &:= \\ & \text{in}(y_c).\text{new } b. \\ & \text{reset.out}(b).\text{in}^{<2 \times t_0}(y_0). \\ & \text{in}(y_k).\text{in}(y_{\text{sign}}). \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{msg} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{check}} = \text{check}(y_{\text{sign}}, \text{vk}(z_P)) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{msg}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{split}$$

 V_0



Example: Brands and Chaum - 1993

$$\begin{split} V(z_V, z_P) &:= \\ & \text{in}(y_c).\text{new } b. \\ & \text{reset.out}(b).\text{in}^{<2 \times t_0}(y_0). \\ & \text{in}(y_k).\text{in}(y_{\text{sign}}). \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{msg} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{check}} = \text{check}(y_{\text{sign}}, \text{vk}(z_P)) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{msg}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{split}$$

 $V_{0} \qquad P$ $commit(m, k) \xrightarrow{new}{m, k}$ $b \xrightarrow{b \oplus m}$ k $sign(\langle b, b \oplus m \rangle, sk(P))$

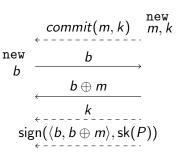
Ρ

Example: Brands and Chaum - 1993

in

$$\begin{split} V(z_V, z_P) &:= \\ & \text{in}(y_c).\text{new } b. \\ & \text{reset.out}(b).\text{in}^{<2 \times t_0}(y_0). \\ & \text{in}(y_k).\text{in}(y_{\text{sign}}). \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{msg} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{check}} = \text{check}(y_{\text{sign}}, \text{vk}(z_P)) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{msg}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{split}$$

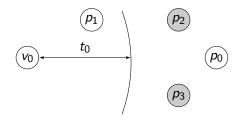
 V_0



Applications

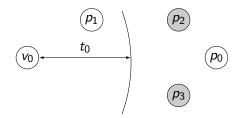
Topology

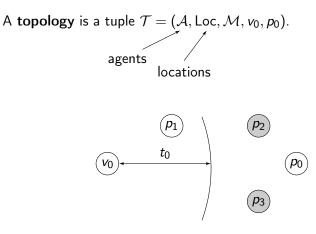
A topology is a tuple $\mathcal{T} = (\mathcal{A}, \mathsf{Loc}, \mathcal{M}, v_0, p_0).$



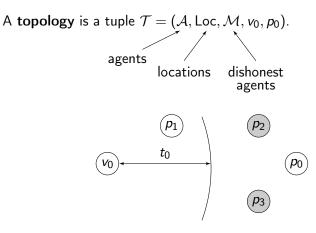
Topology

A **topology** is a tuple
$$\mathcal{T} = (\mathcal{A}, Loc, \mathcal{M}, v_0, p_0)$$
.
agents

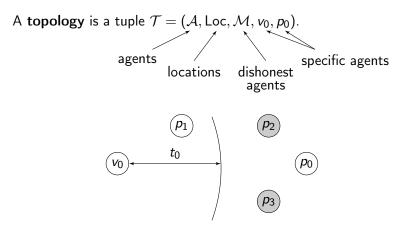




We define
$$\text{Dist}_{\mathcal{T}}(a, b) = \frac{\|\text{Loc}(a) - \text{Loc}(b)\|}{c}$$



We define
$$\mathsf{Dist}_\mathcal{T}(a,b) = rac{\|\mathsf{Loc}(a) - \mathsf{Loc}(b)\|}{c}$$



We define
$$\mathsf{Dist}_\mathcal{T}(a,b) = rac{\|\mathsf{Loc}(a) - \mathsf{Loc}(b)\|}{c}$$

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_a^{t_a}$ with $a \in \mathcal{A}$ and $t_a \in \mathcal{R}_+$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_a^{t_a}$ with $a \in \mathcal{A}$ and $t_a \in \mathcal{R}_+$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

$$\begin{array}{ll} \mathsf{OUT} & \left(\left\lfloor \mathsf{out}(u).P \right\rfloor_{a}^{t_{a}} \right) \uplus \mathcal{P}; \Phi; t \right) \xrightarrow{a, \mathsf{out}(u)} \mathcal{T}_{0} \left(\left\lfloor P \right\rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi'; t \right) \\ & \text{with } \Phi' = \Phi \cup \{ \mathsf{w} \xrightarrow{a, t} u \} \end{array}$$

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_{a}^{t_{a}}$ with $a \in \mathcal{A}$ and $t_{a} \in \mathcal{R}_{+}$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

$$\mathbb{IN} \quad \left(\left\lfloor \operatorname{in}^{\star}(x) \cdot P \right\rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t \right) \xrightarrow{a, \operatorname{in}^{\star}(u)} \mathcal{T}_{0} \left(\left\lfloor P\{x \mapsto u\} \right\rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t \right)$$

if u is deducible from Φ

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_{a}^{t_{a}}$ with $a \in \mathcal{A}$ and $t_{a} \in \mathcal{R}_{+}$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

$$\mathsf{IN} \qquad (\lfloor \mathsf{in}^{\star}(x).P \rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t) \xrightarrow{a, \mathsf{in}^{\star}(u)} \mathcal{T}_{0} (\lfloor P\{x \mapsto u\} \rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t)$$

- if $\exists b \in \mathcal{A}, t_b \in \mathcal{R}_+$ such that $t_b \leq t \mathsf{Dist}_{\mathcal{T}}(b, a)$ and:
- if $b \notin \mathcal{M}$ then $u \in img(\lfloor \Phi \rfloor_b^{t_b})$
- if $b \in \mathcal{M}$ then u is deducible from $\bigcup_{c \in \mathcal{A}} \lfloor \Phi \rfloor_{c}^{t_{b} \mathsf{Dist}_{\mathcal{T}}(c,b)}$

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_a^{t_a}$ with $a \in \mathcal{A}$ and $t_a \in \mathcal{R}_+$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

$$\mathsf{IN} \qquad (\lfloor \mathsf{in}^{\star}(x).P \rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t) \xrightarrow{a, \mathsf{in}^{\star}(u)} \mathcal{T}_{0} (\lfloor P\{x \mapsto u\} \rfloor_{a}^{t_{a}} \uplus \mathcal{P}; \Phi; t)$$

if
$$\exists b \in \mathcal{A}, t_b \in \mathcal{R}_+$$
 such that $t_b \leq t - \text{Dist}_{\mathcal{T}}(b, a)$ and:
• if $b \notin \mathcal{M}$ then $u \in img(|\Phi|_b^{t_b})$

• if
$$b \in \mathcal{M}$$
 then u is deducible from $\bigcup_{c \in \mathcal{A}} \lfloor \Phi \rfloor_{c}^{t_{b}-\mathsf{Dist}_{\mathcal{T}}(c,b)}$

Moreover if $\star = \langle t_g \text{ then } t_a \langle t_g \rangle$.

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_a^{t_a}$ with $a \in \mathcal{A}$ and $t_a \in \mathcal{R}_+$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

TIME
$$(\mathcal{P}; \Phi; t) \longrightarrow_{\mathcal{T}} (\mathcal{P}'; \Phi; t')$$
 with:
• $t' > t$
• $\mathcal{P}' = \{ \lfloor P \rfloor_a^{t_a + (t' - t)} \mid \lfloor P \rfloor_a^{t_a} \in \mathcal{P} \}$

A configuration is a tuple $(\mathcal{P}; \Phi; t)$ where:

• \mathcal{P} is a multiset of $\lfloor P \rfloor_a^{t_a}$ with $a \in \mathcal{A}$ and $t_a \in \mathcal{R}_+$

•
$$\Phi = \{ w_1 \xrightarrow{a_1,t_1} m_1, \cdots, w_n \xrightarrow{a_n,t_n} m_n \}$$
 is a frame

• $t \in \mathcal{R}_+$ is the global time

TIME
$$(\mathcal{P}; \Phi; t) \longrightarrow_{\mathcal{T}} (\mathcal{P}'; \Phi; t')$$
 with:
• $t' > t$
• $\mathcal{P}' = \{ \lfloor P \rfloor_a^{t_a + (t'-t)} \mid \lfloor P \rfloor_a^{t_a} \in \mathcal{P} \}$

NEW, LET, RST ...

Security property: physical proximity

*t*₀-proximity

A protocol \mathcal{P}_{prox} ensures t_0 -proximity w.r.t. a topology $\mathcal{T} = (\mathcal{A}, \text{Loc}, \mathcal{M}, v_0, p_0)$ and a configuration K if:

$$K \xrightarrow{tr}_{\mathcal{T}} (\lfloor \mathsf{end}(v_0, p_0) \rfloor_{v_0}^{t_{v_0}}; \Phi; t) \Rightarrow \mathsf{Dist}_{\mathcal{T}}(v_0, p_0) < t_0.$$

Security property: physical proximity

*t*₀-proximity

A protocol \mathcal{P}_{prox} ensures t_0 -proximity w.r.t. a topology $\mathcal{T} = (\mathcal{A}, \text{Loc}, \mathcal{M}, v_0, p_0)$ and a configuration K if:

$$K \xrightarrow{tr}_{\mathcal{T}} (\lfloor \mathsf{end}(v_0, p_0) \rfloor_{v_0}^{t_{v_0}}; \Phi; t) \Rightarrow \mathsf{Dist}_{\mathcal{T}}(v_0, p_0) < t_0.$$

Mafia frauds (resp. Distance hijacking attacks)

A protocol \mathcal{P}_{prox} is resistant against Mafia frauds (resp. Distance hijacking attacks) if for all topologies $\mathcal{T} \in \mathcal{C}_{MF}$ (resp. \mathcal{C}_{DH}) and initial configurations \mathcal{K} :

$$K \xrightarrow{tr}_{\mathcal{T}} (\lfloor \mathsf{end}(v_0, p_0) \rfloor_{v_0}^{t_{v_0}}; \Phi; t) \Rightarrow \mathsf{Dist}_{\mathcal{T}}(v_0, p_0) < t_0.$$

Symbolic model

Reduction results

Applications

Table of contents

Distance bounding protocols

Symbolic model

Reduction results

Applications

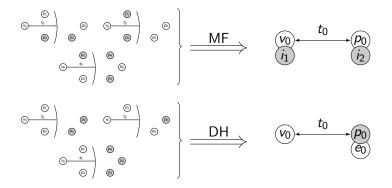
Symbolic model

Reduction results

Applications

Reduction results

Only one topology is sufficient !



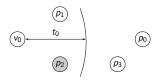
Applications

Mafia fraud attacks

Theorem

Let \mathcal{P}_{prox} be an **executable** protocol. \mathcal{P}_{prox} admits a Mafia fraud attack w.r.t. t_0 -proximity, if and only if, there is an attack against t_0 -proximity in the topology \mathcal{T}_{MF} .

Sketch of proof:



Applications

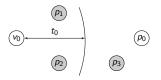
Mafia fraud attacks

Theorem

Let \mathcal{P}_{prox} be an **executable** protocol. \mathcal{P}_{prox} admits a Mafia fraud attack w.r.t. t_0 -proximity, if and only if, there is an attack against t_0 -proximity in the topology \mathcal{T}_{MF} .

Sketch of proof:

 the honest agents become malicious -> no executed processes



Applications

Mafia fraud attacks

Theorem

Let \mathcal{P}_{prox} be an **executable** protocol. \mathcal{P}_{prox} admits a Mafia fraud attack w.r.t. t_0 -proximity, if and only if, there is an attack against t_0 -proximity in the topology \mathcal{T}_{MF} .

Sketch of proof:

- the honest agents become malicious -> no executed processes
- 2. we place them ideally [Nigam *et. al.*, 16]

Applications

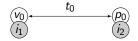
Mafia fraud attacks

Theorem

Let \mathcal{P}_{prox} be an **executable** protocol. \mathcal{P}_{prox} admits a Mafia fraud attack w.r.t. t_0 -proximity, if and only if, there is an attack against t_0 -proximity in the topology \mathcal{T}_{MF} .

Sketch of proof:

- the honest agents become malicious -> no executed processes
- 2. we place them ideally [Nigam *et. al.*, 16]



3. we shorten the distance

Applications

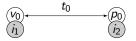
Mafia fraud attacks

Theorem

Let \mathcal{P}_{prox} be an **executable** protocol. \mathcal{P}_{prox} admits a Mafia fraud attack w.r.t. t_0 -proximity, if and only if, there is an attack against t_0 -proximity in the topology \mathcal{T}_{MF} .

Sketch of proof:

- the honest agents become malicious -> no executed processes
- 2. we place them ideally [Nigam *et. al.*, 16]



3. we shorten the distance

Remark. This proof cannot be adapted for distance hijacking attacks !

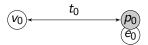
Distance hijacking attacks

Theorem

Let \mathcal{P}_{prox} be a protocol such that the Verifier role respects the following grammar:

$$\begin{array}{rrrr} P,Q:=& \operatorname{end}(z_0,z_1) & \mid & \operatorname{in}(x).P & \mid & \operatorname{let} x=v \text{ in } P \\ & \mid & \operatorname{new} n.P & \mid & \operatorname{out}(u).P & \mid & \operatorname{reset.out}(u').\operatorname{in}^{< t}(x).P \end{array}$$

If \mathcal{P}_{prox} admits a Distance hijacking attack w.r.t. t_0 -proximity, then $\overline{\mathcal{P}_{prox}}$ admits an attack against t_0 -proximity in the topology \mathcal{T}_{DH} .



 $\mathcal{T}_{\mathsf{DH}}$

In $\overline{\mathcal{P}_{\text{prox}}}$ we only keep guards computed by v_0 .

14 / 20

Symbolic model

Reduction results

Applications

Table of contents

Distance bounding protocols

Symbolic model

Reduction results

Applications

ProVerif [Blanchet, 01]

ProVerif is a verifier tool for cryptographic protocols.

http://proverif.inria.fr/

- fully automated proofs
- handles an unbounded number of sessions
- can model protocols defined by phases (e.g. e-voting)
 - \rightarrow (phase *i*).*P* represents a process *P* that can only be executed in phase *i*

ProVerif [Blanchet, 01]

ProVerif is a verifier tool for cryptographic protocols.

http://proverif.inria.fr/

- fully automated proofs
- handles an unbounded number of sessions
- can model protocols defined by phases (e.g. e-voting)
 - \rightarrow (phase *i*).*P* represents a process *P* that can only be executed in phase *i*

Phases in DB protocols:

- Phase 0 \rightarrow slow initialisation phase
- Phase $1 \rightarrow$ rapid phase
- Phase 2 \rightarrow slow verification phase

Translation into ProVerif $Transf(\mathcal{T}, \mathcal{P}, t_0)$

 $\begin{array}{l} V_0(v_0,p_0):=\\ & \text{in}(y_c).\text{new } b.\\ & \text{reset.out}(b).\text{in}^{<2\times t_0}(y_0).\\ & \text{in}(y_k).\text{in}(y_{\text{sign}}).\\ & \text{let } y_m = \text{open}(y_c,y_k) \text{ in}\\ & \text{let } y_{msg} = \text{getmsg}(y_{\text{sign}}) \text{ in}\\ & \text{let } y_{\text{check}} = \text{check}(y_{\text{sign}},\text{vk}(z_P)) \text{ in}\\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{msg}) \text{ in}\\ & \text{end}(z_V, z_P).\\ & 0 \end{array}$

Brands and Chaum

Translation into ProVerif Transf $(\mathcal{T}, \mathcal{P}, t_0)$

$\overline{V_0}(v_0, p_0) :=$
$in(y_c).new b.$
phase 1.
$\operatorname{out}(b).\operatorname{in}(y_0).$
phase 2.
$in(y_k).in(y_{sign}).$
let $y_m = open(y_c, y_k)$ in
$\mathtt{let} \; y_{msg} = \mathtt{getmsg}(y_{sign}) \; \mathtt{in}$
let $y_{check} = check(y_{sign}, vk(z_P))$ in
let $y_{eq} = eq(\langle b, b \oplus y_m angle, y_{msg})$ in
$end(z_V, z_P).$
0

Brands and Chaum

Translation into ProVerif $Transf(\mathcal{T}, \mathcal{P}_{prox}, t_0)$

Given a process P we define:

- $P^{<}$: all the possible ways of spitting P in the phases 0, 1 and 2
- P^{\geq} : all the possible ways of spitting P in the phases 0 and 2

 $Transf(\mathcal{T}, \mathcal{P}, t_{prox})$ is the multiset of processes derived from \mathcal{P} when applying:

- $\cdot^<$ for all instantiated roles of ${\cal P}$ executed by agents close to v_0
- \cdot^{\geq} for all instantiated roles of \mathcal{P} executed by agents far from v_0

Proposition

If $(\mathcal{P}_{\text{prox}} \cup V_0)$ admits an attack w.r.t. t_0 -proximity in \mathcal{T} then $(\text{Transf}(\mathcal{T}, \mathcal{P}, t_0) \uplus \overline{V_0}(v_0, p_0); \Phi_{init}; 0)$ admits an attack in ProVerif.

Case analysis - DB protocols

Protocols	MF	DH
Brands and Chaum	\checkmark	×
Meadows <i>et al.</i> $(n_V \oplus n_P, P)$	\checkmark	\checkmark
Meadows <i>et al.</i> $(n_V, n_P \oplus P)$	\checkmark	×
TREAD-Asymmetric	×	×
TREAD-Symmetric	\checkmark	×
MAD (One-Way)	\checkmark	×
Swiss-Knife	\checkmark	\checkmark
Munilla <i>et al.</i>	\checkmark	\checkmark
CRCS	\checkmark	×
Hancke and Kuhn	\checkmark	\checkmark

 (×: attack found, √: proved secure)
 Coherent with the formal analysis recently done by Mauw *et. al.* using Tamarin

Conclusion

We have adapted the standard applied Pi-Calculus to take into account time and locations.

We obtained **two reduction results** that reduce the number of relevant topologies that need to be studied to only 2.

We provide a solution to prove t_0 -proximity using a **usual verification tool**, ProVerif, and we applied it to analyse well-known protocols.

Future work

- \Rightarrow Define a more precise notion of time.
- \Rightarrow Take into account **Terrorist frauds**:

Terrorist frauds

A remote dishonest prover cooperates with another dishonest agent, close to the verifier, to authenticates himself to the prover without giving any advantages for future attacks.

