# A symbolic framework to analyse physical proximity in security protocols

Alexandre Debant, Stéphanie Delaune, Cyrille Wiedling

Univ Rennes - IRISA - CNRS

December 13, 2018



Symbolic model Reduction results

**Applications** 

# Introduction

Security protocols

**Distributed programs** that use cryptographic primitives to ensure security properties.



Authentication

Integrity



Untraceability

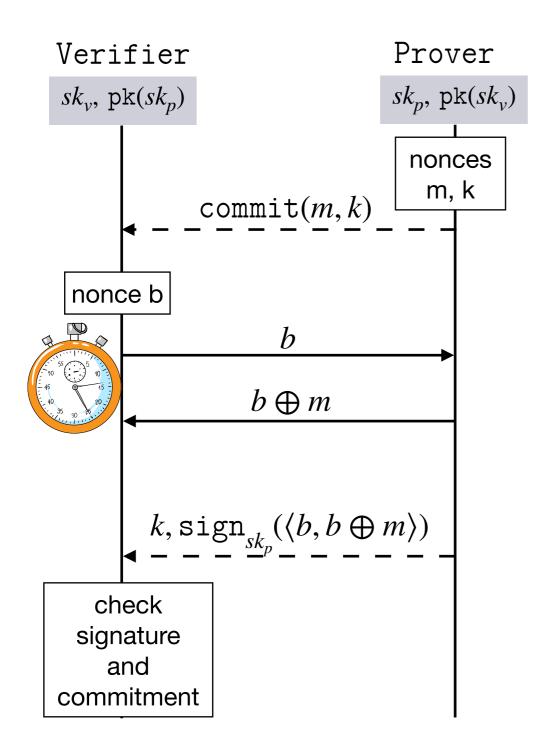
# Introduction

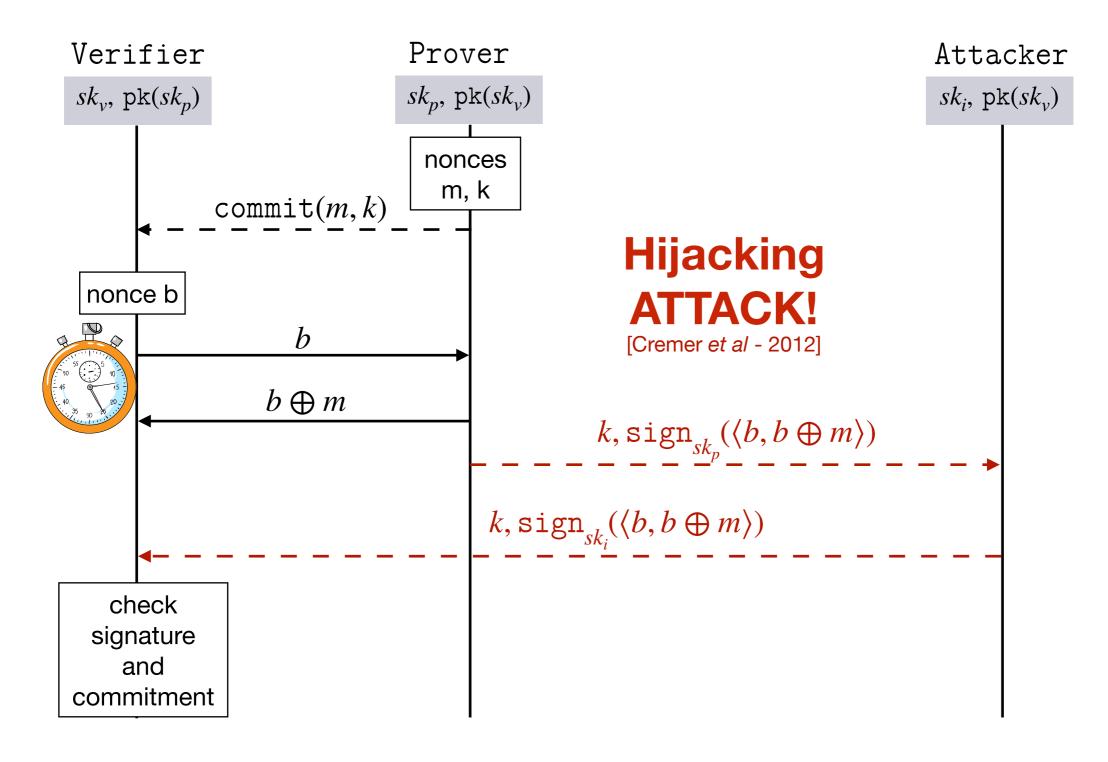
Security protocols

**Distributed programs** that use cryptographic primitives to ensure security properties.



## **Authentication with physical proximity**





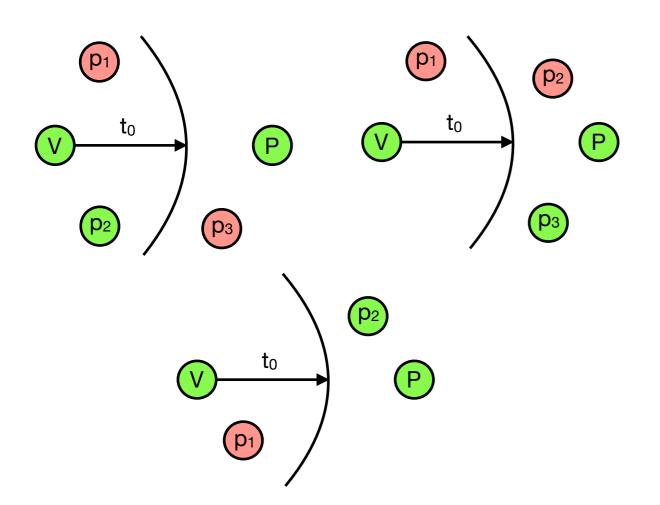
# **Classes of attacks**

## Mafia frauds

(or Man-in-the-Middle)

An attack in a topology such that:

- ►V is honest
- ► P is honest



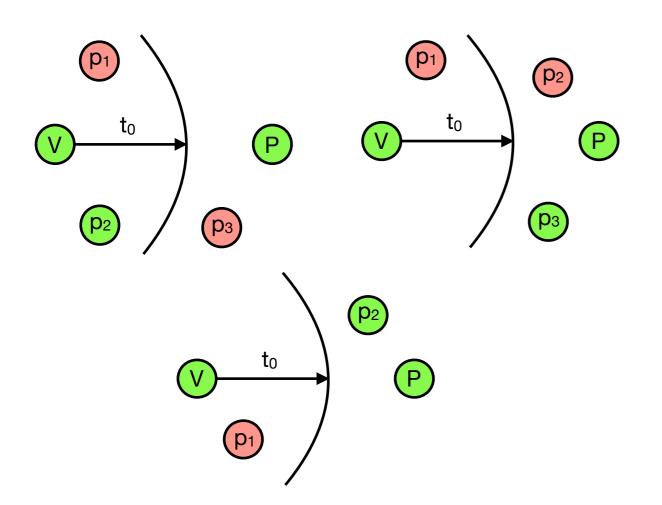
# **Classes of attacks**

## Mafia frauds

(or Man-in-the-Middle)

An attack in a topology such that:

- ►V is honest
- ► P is honest

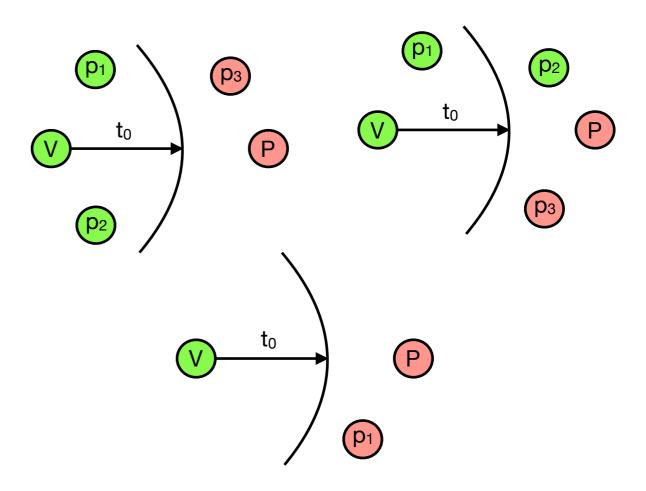


## **Distance** hijacking

(or Man-in-the-Middle)

#### An attack in a topology such that:

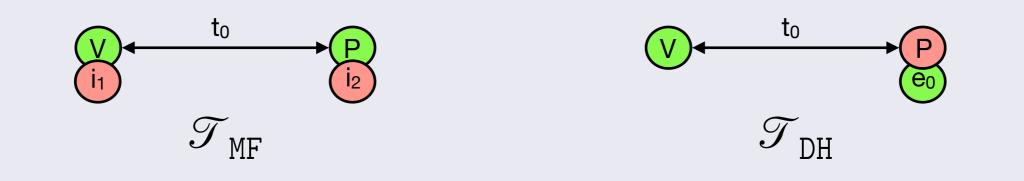
- ►V is honest
- ► P is **dishonest**
- ► No dishonest agents close to V



# **Contributions**

**Reduction results** 

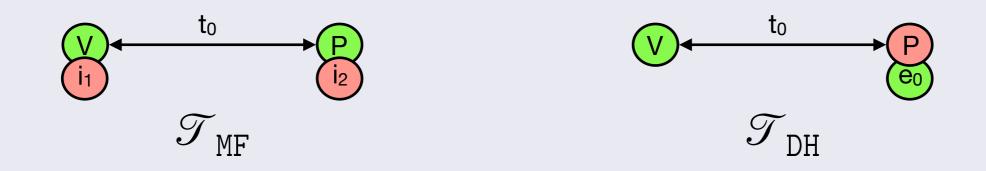
Consider 1 topology is enough to prove Mafia fraud or Distance hijacking resistance!



# **Contributions**

## **Reduction results**

Consider 1 topology is enough to prove Mafia fraud or Distance hijacking resistance!



## Getting rid of topologies and time

- Modeling in ProVerif using phases
- Application to well-know DB protocols

Reduction results

Applications

# **Table of contents**

## **Distance bounding protocols**

Symbolic models

**Reduction results** 

**Applications** 

# Symbolic verification in a nutshell

## Symbolic models:

- (i) <u>Terms</u>: abstracted with terms (e.g.  $enc(\langle n_1, n_2 \rangle, k)$ )
- (ii) <u>Protocols</u>: specific logics, process algebra, multiset rewriting rules
- (iii) Properties: trace property or equivalence property









# Term algebra



**Messages:** terms but over a set of names  $\mathcal{N}$  and a signature  $\Sigma$  given with either an equational theory E or a rewriting system.

## Example

- Names:  $\mathcal{N} = \{a, n, k\}$
- ► Signature:  $\Sigma = \{ \text{senc}, \text{sdec}, \text{pair}, \text{proj}_1, \text{proj}_2, \oplus \}$

| $x \oplus 0 = x$ | $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ |
|------------------|-------------------------------------------------|
| $x \oplus x = 0$ | $x \oplus y = y \oplus x$                       |

$$\begin{split} \texttt{sdec}(\texttt{senc}(x,y),y) \to x & \texttt{proj}_1(\texttt{pair}(x,y)) \to x \\ & \texttt{proj}_2(\texttt{pair}(x,y)) \to y \end{split}$$

For example:  $sdec(senc(n \oplus 0), k), k)$  is "equal" to n

## **Process algebra**

The role of an agent is described by a process following the grammar:

$$P := 0$$
null process $| new n.P$ name restriction $| let x = u in P$ conditional declaration $| out(u).P$ output $| in(x).P$ input

## **Process algebra**

The role of an agent is described by a process following the grammar:

$$P := 0$$
null process $| new n.P$ name restriction $| let x = u in P$ conditional declaration $| out(u).P$ output $| in(x).P$ input $| in^{guarded input $| reset.P$ personal clock reset$ 

## **Process algebra**

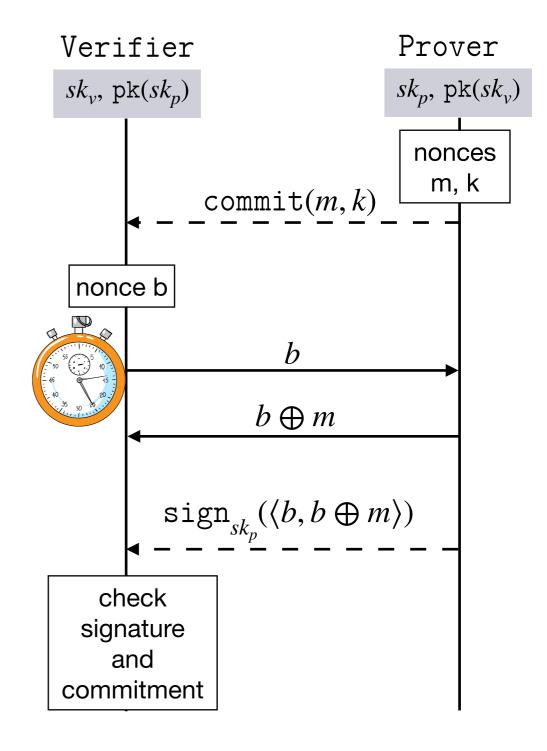
The role of an agent is described by a process following the grammar:

$$P := 0$$
null process $| new n.P$ name restriction $| let x = u in P$ conditional declaration $| out(u).P$ output $| in(x).P$ input $| in^{guarded input $| reset.P$ personal clock reset$ 

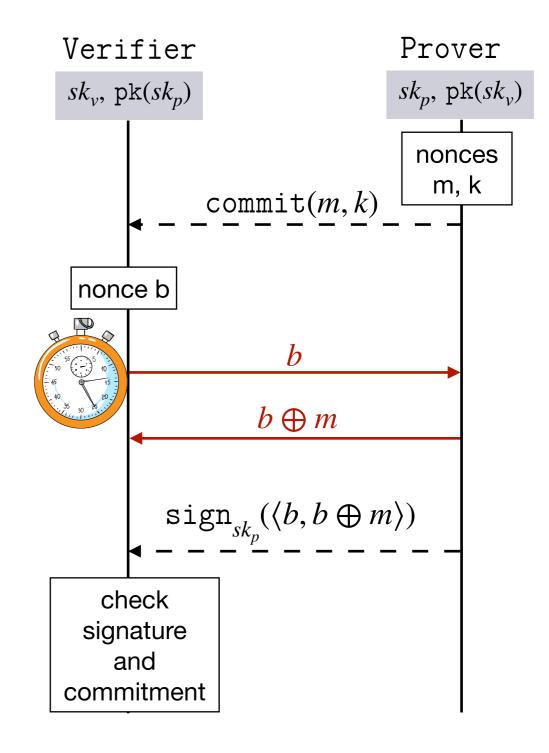
#### Protocol

A protocol is a set of roles  $(\Pi_1, ..., \Pi_k)$  describing the behavior of each honest agents.

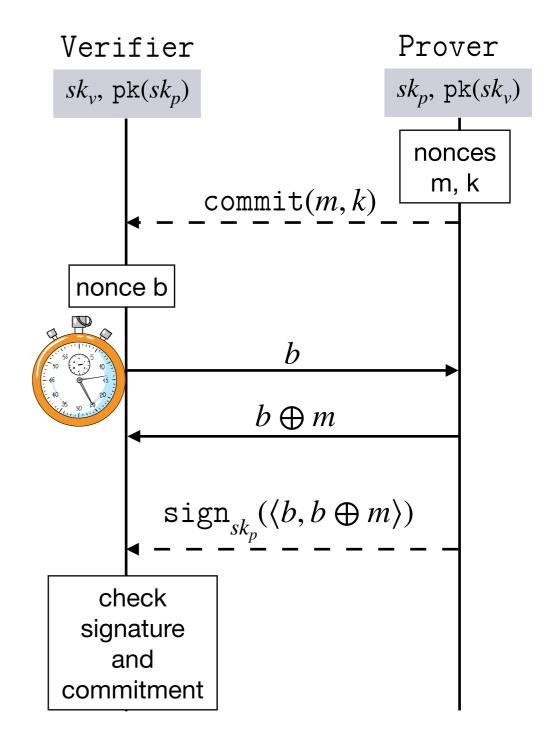
$$\begin{aligned} \forall (z_v, z_p) &\coloneqq \\ & \text{in}(y_c) \text{. new } b \text{.} \\ & \text{reset.out}(b) \text{. in}^{<2 \times t_0}(y_0) \text{.} \\ & \text{in}(y_k) \text{. in}(y_{\text{sign}}) \text{.} \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{\text{msg}} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{\text{msg}}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{aligned}$$



$$\begin{aligned} &\mathcal{V}(z_v, z_p) \coloneqq \\ & \text{in}(y_c) \text{.new } b \text{.} \\ & \text{reset.out}(b) \text{.in}^{<2 \times t_0}(y_0) \text{.} \\ & \text{in}(y_k) \text{.in}(y_{\text{sign}}) \text{.} \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{\text{msg}} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{\text{msg}}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{aligned}$$

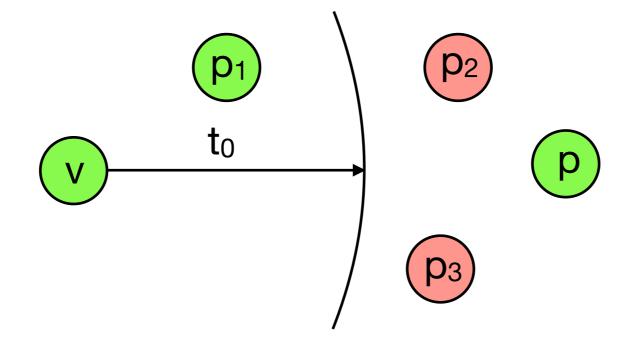


$$\begin{split} \mathcal{V}(z_v, z_p) &\coloneqq \\ & \text{in}(y_c) \text{.new } b \text{.} \\ & \text{reset.out}(b) \text{.in}^{<2 \times t_0}(y_0) \text{.} \\ & \text{in}(y_k) \text{.in}(y_{\text{sign}}) \text{.} \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{\text{msg}} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{\text{msg}}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{split}$$



## Topology

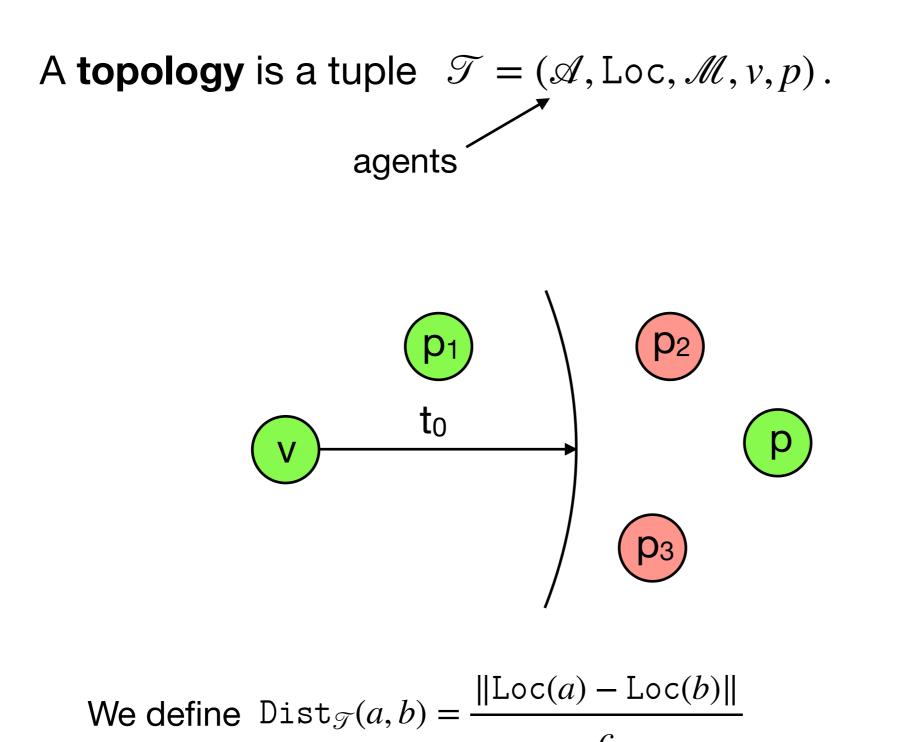
A **topology** is a tuple  $\mathcal{T} = (\mathscr{A}, Loc, \mathscr{M}, v, p)$ .



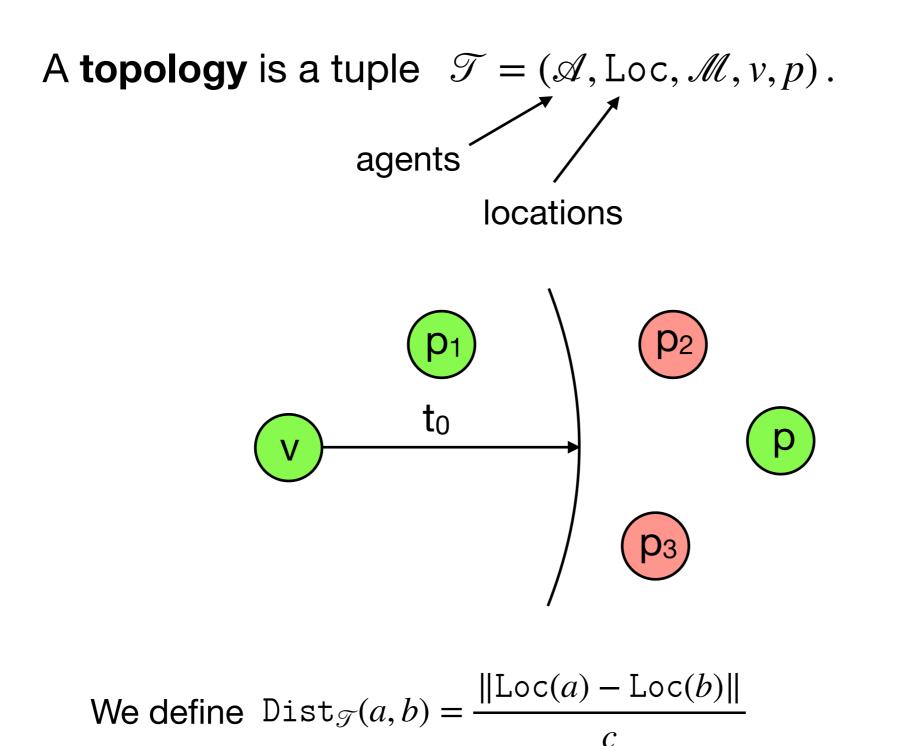
We define 
$$\text{Dist}_{\mathcal{T}}(a,b) = \frac{\|\text{Loc}(a) - \text{Loc}(b)\|}{c}$$

## Topology

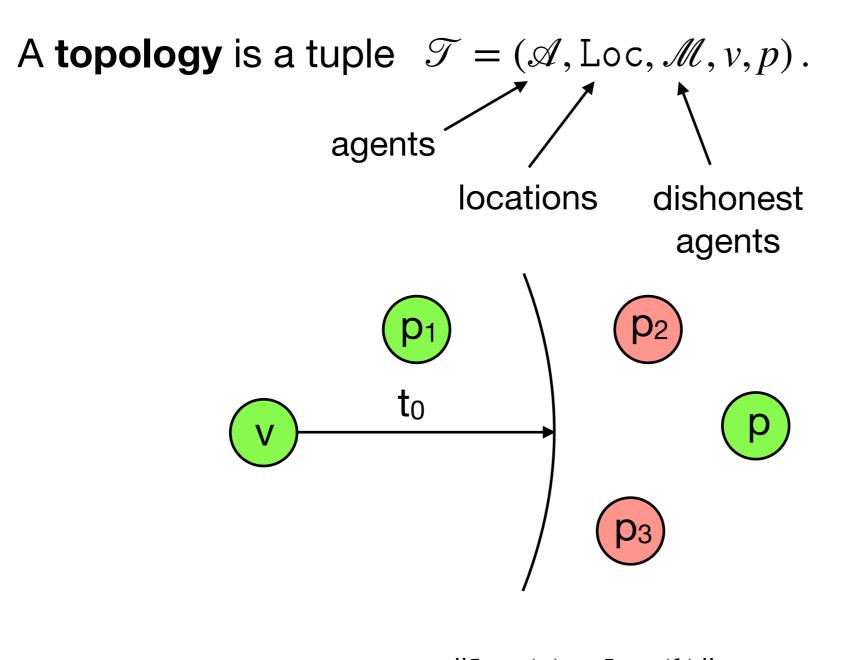
С



## Topology

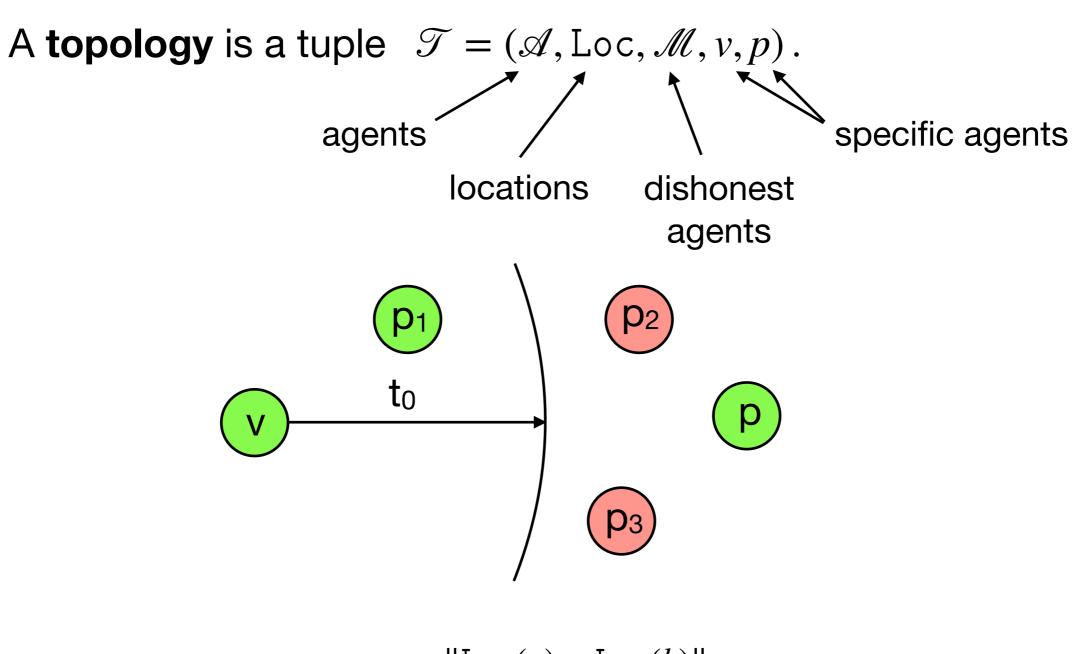


## Topology



We define 
$$\text{Dist}_{\mathcal{T}}(a,b) = \frac{\|\text{Loc}(a) - \text{Loc}(b)\|}{c}$$

## Topology



We define 
$$\text{Dist}_{\mathcal{T}}(a,b) = \frac{\|\text{Loc}(a) - \text{Loc}(b)\|}{c}$$

# **Configuration and semantics**

## A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

# **Configuration and semantics**

A configuration is a tuple  $(\mathscr{P}; \Phi; t)$  where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

TIME  $(\mathscr{P}; \Phi; t) \longrightarrow_{\mathscr{T}_0} (\mathscr{P}'; \Phi; t')$ 

t' > t

 $\blacktriangleright \mathscr{P}' = \{ |P|_a^{t_a + (t'-t)} | |P| \in \mathscr{P} \}$ 

# **Configuration and semantics**

A configuration is a tuple  $(\mathscr{P}; \Phi; t)$  where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

**OUT** 
$$([\operatorname{out}(u) \cdot P]_a^{t_a} \uplus \mathscr{P}; \Phi; t) \xrightarrow{a, \operatorname{out}(u)} \mathscr{T}_0 ([P]_a^{t_a} \uplus \mathscr{P}; \Phi'; t)$$
  
with  $\Phi' = \Phi \cup \{w \xrightarrow{a, t} u\}$ 

# **Configuration and semantics**

## A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

$$\mathsf{IN} \qquad ([\operatorname{in}^*(x) \, P]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t) \xrightarrow{a, \operatorname{in}^*(u)} \mathscr{T}_0 ([P\{x \mapsto u\}]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t)$$

if u is deducible from  $\Phi$ 

# **Configuration and semantics**

## A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

$$[\mathsf{N} \quad ([\operatorname{in}^*(x) \, P]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t) \xrightarrow{a, \operatorname{in}^*(u)} \mathscr{T}_0 ([P\{x \mapsto u\}]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t)$$

if  $\exists b \in \mathscr{A}, t_b \in \mathscr{R}_+$  such that  $t_b \leq t - \text{Dist}_{\mathscr{T}_0}(b, a)$  and:

• if 
$$b \notin \mathcal{M}$$
 then  $u \in img(\lfloor \Phi \rfloor_{h}^{t_{b}})$ 

• if  $b \in \mathcal{M}$  then u is deducible from  $\bigcup \lfloor \Phi \rfloor_{c}^{t_{b}-\text{Dist}_{\mathcal{T}_{0}}(c,b)}$  $c \in \mathscr{A}$ 

# **Configuration and semantics**

## A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- $\mathscr{P}$  is a multiset of  $[P]_a^{t_a}$  with  $a \in \mathscr{A}$  and  $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$  is a frame
- ▶  $t \in \mathcal{R}_+$  is the global time

## NEW, LET, RESET...

# **Security property: physical proximity**

## Mafia frauds (resp. Distance hijacking attacks)

A protocol  $\mathcal{P}_{prox}$  is resistant against Mafia frauds (resp. Distance hijacking attacks) if for all topologies  $\mathcal{T} \in \mathscr{C}_{MF}$  (resp.  $\mathscr{C}_{DH}$ ) and initial configuration *K*:

$$K \xrightarrow{tr} (\lfloor \operatorname{end}(v_0, p_0) \rfloor_{v_0}^{t_{v_0}}; \Phi; t) \Rightarrow \operatorname{Dist}_{\mathcal{T}}(v_0, p_0) < t_0$$

**Reduction results** 

Applications

## **Table of contents**

## **Distance bounding protocols**

Symbolic models

**Reduction results** 

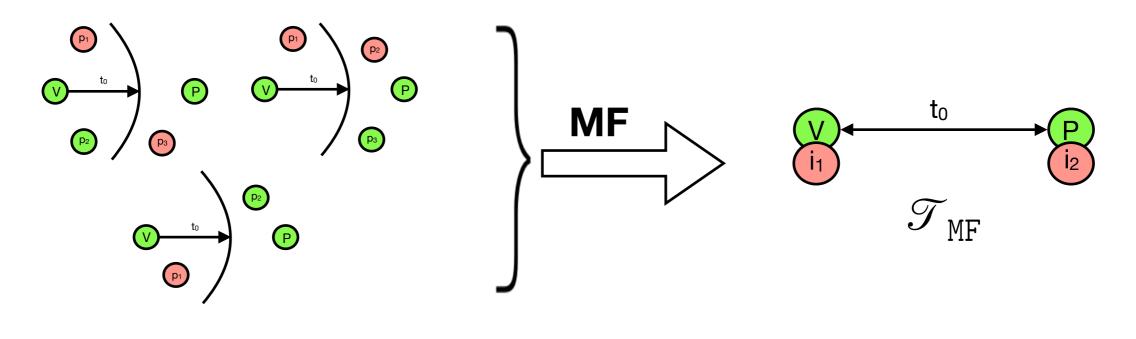
**Applications** 

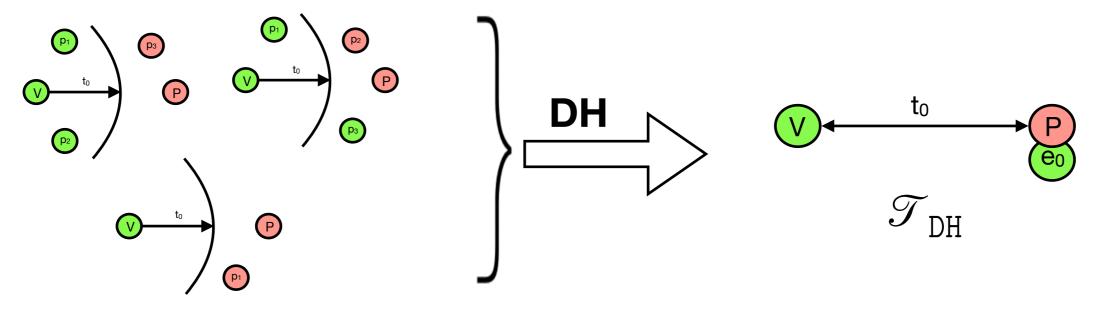
Reduction results

Applications

## **Reduction results**

## **Only one topology is sufficient!**

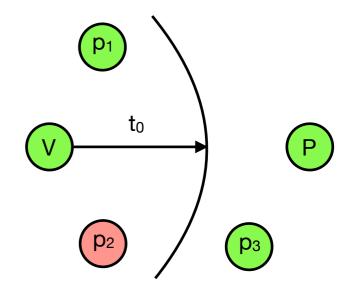




### Theorem

Let  $\mathscr{P}_{\text{prox}}$  be an executable protocol.  $\mathscr{P}_{\text{prox}}$  admits a Mafia fraud attack w.r.t.  $t_0$ -proximity, if and only if, there is an attack against  $t_0$ -proximity in the topology  $\mathscr{T}_{\text{MF}}$ .

**Sketch of proof:** 

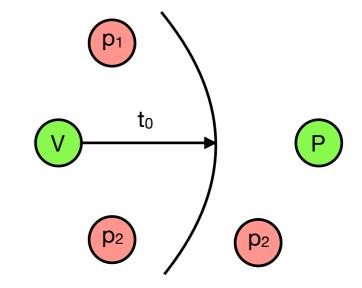


## Theorem

Let  $\mathscr{P}_{prox}$  be an executable protocol.  $\mathscr{P}_{prox}$  admits a Mafia fraud attack w.r.t.  $t_0$ -proximity, if and only if, there is an attack against  $t_0$ -proximity in the topology  $\mathscr{T}_{MF}$ .

#### **Sketch of proof:**

The honest agents become malicious
 –> no executed processes



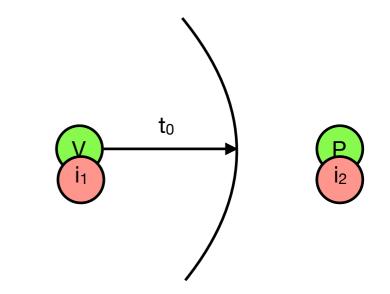
## Theorem

Let  $\mathscr{P}_{prox}$  be an executable protocol.  $\mathscr{P}_{prox}$  admits a Mafia fraud attack w.r.t.  $t_0$ -proximity, if and only if, there is an attack against  $t_0$ -proximity in the topology  $\mathscr{T}_{MF}$ .

#### **Sketch of proof:**

- The honest agents become malicious

   –> no executed processes
- 2. We place them ideally (following [Nigam et al., ESORICS'16])

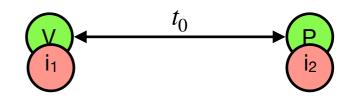


## Theorem

Let  $\mathscr{P}_{prox}$  be an executable protocol.  $\mathscr{P}_{prox}$  admits a Mafia fraud attack w.r.t.  $t_0$ -proximity, if and only if, there is an attack against  $t_0$ -proximity in the topology  $\mathscr{T}_{MF}$ .

#### **Sketch of proof:**

- The honest agents become malicious
   –> no executed processes
- 2. We place them ideally (following [Nigam et al., ESORICS'16])
- 3. We shorten the distance



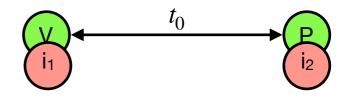
## Theorem

Let  $\mathscr{P}_{prox}$  be an executable protocol.  $\mathscr{P}_{prox}$  admits a Mafia fraud attack w.r.t.  $t_0$ -proximity, if and only if, there is an attack against  $t_0$ -proximity in the topology  $\mathscr{T}_{MF}$ .

#### **Sketch of proof:**

- The honest agents become malicious
   –> no executed processes
- 2. We place them ideally (following [Nigam et al., ESORICS'16])
- 3. We shorten the distance

**Remark.** This proof cannot be adapted for distance hijacking attacks!



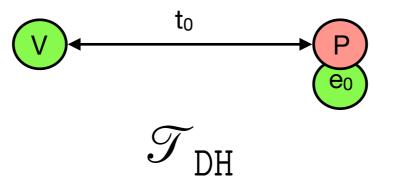
# **Distance hijacking attacks**

#### Theorem

Let  $\mathscr{P}_{prox}$  be a protocol such that the Verifier role respects the following grammar:

> $P, Q := \text{end}(z_0, z_1) \mid \text{in}(x) \cdot P \mid \text{let } x = v \text{ in } P$  $| \text{ new } n \cdot P | \text{ out}(u) \cdot P | \text{ reset.out}(u') \cdot \text{in}^{< t}(x) \cdot P$

If  $\mathscr{P}_{prox}$  admits a Distance hijacking attack w.r.t.  $t_0$ -proximity, then  $\overline{\mathscr{P}_{prox}}$ admits an attack against  $t_0$ -proximity in the topology  $\mathcal{T}_{DH}$ .



In  $\mathscr{P}_{prox}$  we only keel guards computed by  $v_0$ .

# **Table of contents**

## **Distance bounding protocols**

Symbolic models

**Reduction results** 

**Applications** 

# Getting rid of topologies and time

**Up to now:** we have reduced the number of topologies to only one

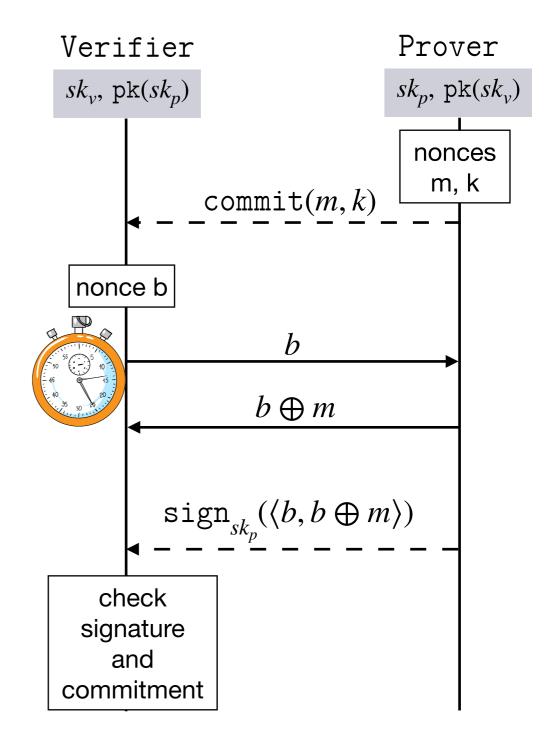
**But:** even a single topology cannot be modeled into existing tools

We propose a methodology to encode the two reduced topology in the ProVerif tool.

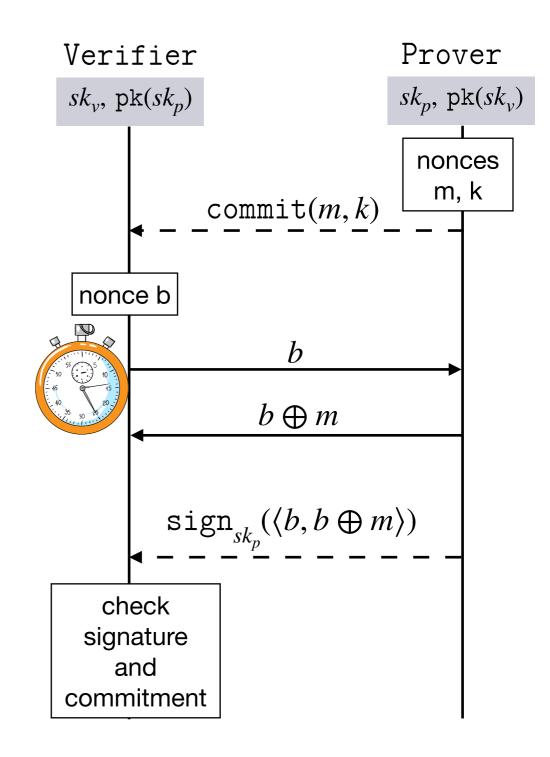
#### **Overview of the encoding**

- few assumptions on the protocol
- it relies on the phases of ProVerif
  - e.g. in DB protocols:
  - ► Phase 0 → slow initialization phase
  - ► Phase 1  $\longrightarrow$  rapid phase
  - ► Phase 2 → slow verification phase

$$\begin{split} V(z_v, z_p) &\coloneqq \\ & \text{in}(y_c) \text{.new } b \text{.} \\ & \text{reset.out}(b) \text{.in}^{<2 \times t_0}(y_0) \text{.} \\ & \text{in}(y_k) \text{.in}(y_{\text{sign}}) \text{.} \\ & \text{let } y_m = \text{open}(y_c, y_k) \text{ in} \\ & \text{let } y_{\text{msg}} = \text{getmsg}(y_{\text{sign}}) \text{ in} \\ & \text{let } y_{\text{eq}} = \text{eq}(\langle b, b \oplus y_m \rangle, y_{\text{msg}}) \text{ in} \\ & \text{let } y_{\text{eq}'} = \text{eq}(b \oplus y_m, y_0) \text{ in} \\ & 0 \end{split}$$



```
\overline{V_0}(z_v, z_p) :=
        in(y_c).new b.
         phase 1.
         \operatorname{out}(b).\operatorname{in}(y_0).
        phase 2.
        in(y_k).in(y_{sign}).
        let y_m = \operatorname{open}(y_c, y_k) in
        let y_{msg} = getmsg(y_{sign}) in
        let y_{eq} = eq(\langle b, b \oplus y_m \rangle, y_{msg}) in
        let y_{eq'} = eq(b \oplus y_m, y_0) in
         0
```



# **Translation into ProVerif** $Transf(\mathcal{T}, \mathcal{P}_{prox}, t_0)$

Given a process *P* we define:

- $P^{<}$  : all the possible ways of splitting P in the phases 0, 1 and 2
- $P^{\geq}$  : all the possible ways of splitting P in the phases 0, and 2

 $Transf(\mathcal{T}, \mathscr{P}_{prox}, t_0)$  is the multiset of processes derived from  $\mathscr{P}$  when applying:

- .< for all instantiated roles of  $\mathscr{P}$  executed by agents close to  $v_0$
- ▶ .≥ for all instantiated roles of  $\mathscr{P}$  executed by agents far from  $v_0$

#### Proposition

If  $(\mathscr{P}_{prox} \cup V_0)$  admits an attack w.r.t.  $t_0$  – proximity in  $\mathscr{T}$  then  $(Transf(\mathcal{T}, \mathcal{P}, t_0) \uplus \overline{V_0}(v_0, p_0); \Phi_{\text{init}})$  admits an attack in ProVerif.

#### Inspired by [Chothia et al. - FC'15]

## **Case analysis - DB protocols**

| Protocols                                   | MF | DH           |
|---------------------------------------------|----|--------------|
| Brands and Chaum                            |    | X            |
| Meadows <i>et al.</i> $(n_V \oplus n_P, P)$ |    | $\checkmark$ |
| Meadows <i>et al.</i> $(n_V, n_P \oplus P)$ |    | ×            |
| TREAD-Asymmetric                            | ×  | ×            |
| TREAD-Symmetric                             |    | ×            |
| MAD (One-Way)                               |    | ×            |
| Swiss-Knife                                 |    | $\checkmark$ |
| Munilla et al.                              |    | $\checkmark$ |
| CRCS                                        |    | ×            |
| Hancke and Kuhn                             |    | $\checkmark$ |

(  $\times$  : attack found,  $\checkmark$  : proved secure)

- Coherent with the recent analysis done in [Mauw et al. S&P'18] using Tamarin
- We never obtained false attacks

# Conclusion

We have adapted an existing symbolic model to take time into account.

We obtained **two reductions results** that reduce the number of relevant topologies that need to be studied from infinitely many to only 2.



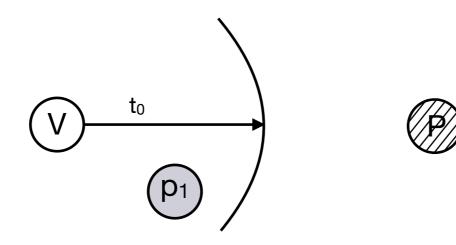
We provide a methodology to encode these reduced topologies into an **existing verification tool**, ProVerif, to be able to analyse well-known protocols w.r.t. authentication with physical proximity.

## **Future work**

**Goal:** Establish reduction results to enable the verification for Terrorist frauds reusing existing tools.

## Terrorist fraud

A remote dishonest prover cooperates with another dishonest agent, close to the verifier, to authenticates himself to the prover without giving any advantages for future attacks.



#### **Challenge:**

Formally define the notion of semi-dishonest agents