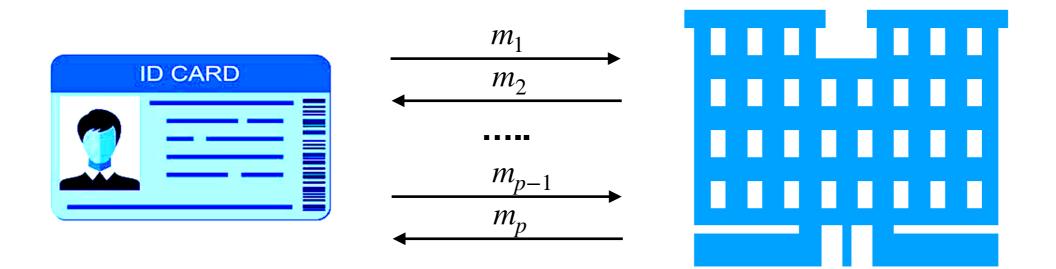
Symbolic verification of terrorist fraud

Alexandre Debant, Stéphanie Delaune, Cyrille Wiedling

Univ Rennes - IRISA - CNRS

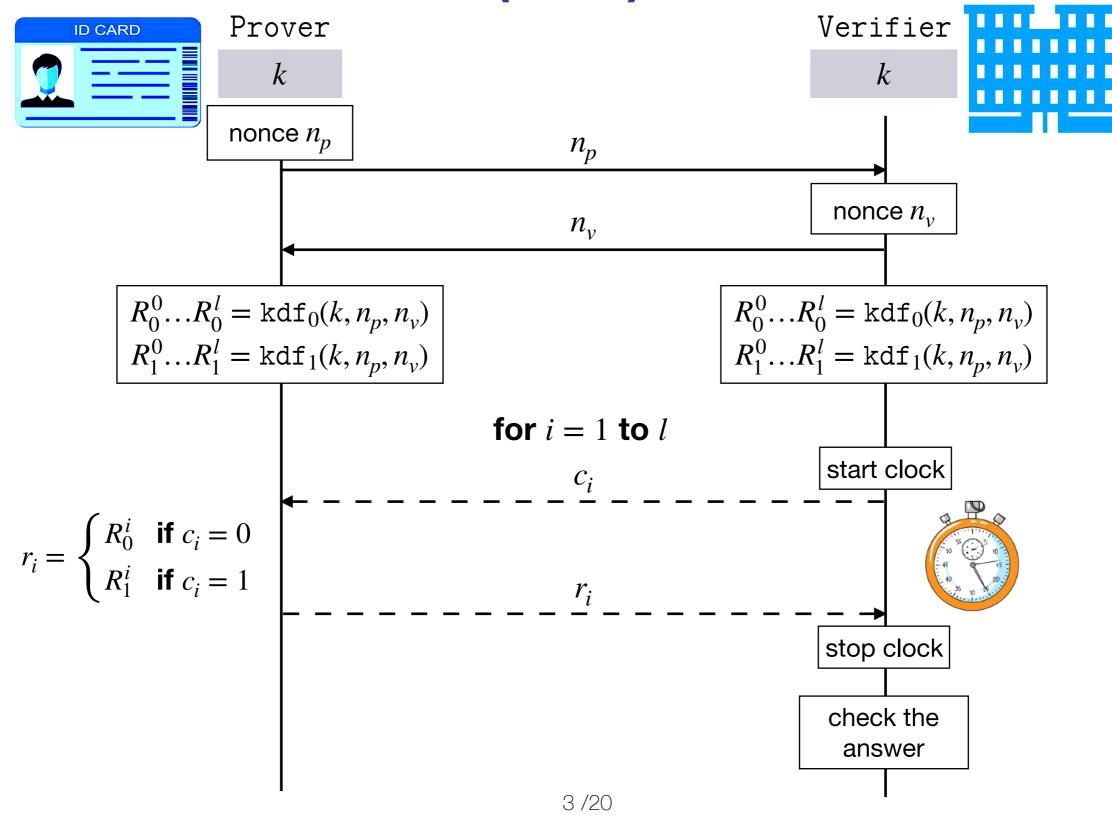
ESORICS 2019 September 23th 2019

Distance bounding protocols



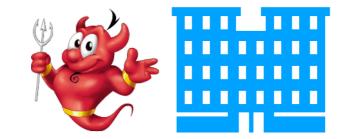
The access reader must **authenticate AND verify the proximity** of the card.

Hancke and Kuhn protocol (2005)



Attack scenarios

Mafia fraud (i.e., Man In the Middle)



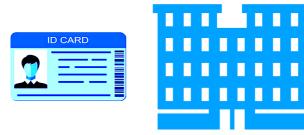
An attacker, located in-between a verifier and a remote prover, tries to make the verifier think that they are close.

Attack scenarios

Mafia fraud (i.e., Man In the Middle)

An attacker, located in-between a verifier and a remote prover, tries to make the verifier think that they are close.

Distance fraud (or distance hijacking)



An attacker tries to abuse honest provers to be authenticated by a remote verifier.

Attack scenarios

Mafia fraud (i.e., Man In the Middle)

An attacker, located in-between a verifier and a remote prover, tries to make the verifier think that they are close.

Distance fraud (or distance hijacking)

An attacker tries to abuse honest provers to be authenticated by a remote verifier.

An attacker accepts to collude with an accomplice to be authenticated once by a remote verifier but without giving him any avantage for future attacks.

Symbolic verification in a nutshell

Symbolic models:

- few abstractions (messages, attacker...)
- automatic procedures and existing tools +

Existing tools exist:

Some success stories:

Symbolic models for distance-bounding

Existing tools are not suitable to analyse DB protocols...

- \longrightarrow no model of time
 - + the attacker relay messages without introducing any delay!

First models for DB protocols

- Basin et al. [CSF'09] and Cremers et al. [S&P'12]
- \longrightarrow lack of automation...

A lot of progress since last year:

- ProVerif encoding
 - Chothia et al. [USENIX'18]
 - Our works [FSTTCS'18] [ESORICS'19]
- ➡ Tamarin encoding: Mauw et al. [S&P'18] [CCS'19]

About terrorist fraud

An attacker accepts to collude with an accomplice to be authenticated once by a remote verifier but without giving him any avantage for future attacks.

Chothia et al. - [USENIX'18]

- Non realistic definition of terrorist fraud
- + Fully automated verification using ProVerif

Mauw et al. - [CCS'19]

- Satisfying definition of terrorist fraud (which corresponds to ours)
 - Not fully automated verification (unbounded number of behaviors for collusion)

Contributions

1.A formal definition of terrorist fraud

2. Towards automation

- The attacker has a best strategy to collude
- There exists a most general topology

3. Case studies

Term algebra

Messages: terms but over a set of names \mathcal{N} and a signature Σ given with either an equational theory E or a rewriting system.

Example

- Names: $\mathcal{N} = \{a, n, k\}$
- Signature: $\Sigma = \{ \text{senc}, \text{sdec}, \text{pair}, \text{proj}_1, \text{proj}_2, \text{kdf} \}$

$$sdec(senc(x, y), y) \to x \qquad proj_1(pair(x, y)) \to x$$
$$proj_2(pair(x, y)) \to y$$

For example: $sdec(senc(proj_1(pair(n, m))), k), k) \downarrow =_E n$

Process algebra

The role of an agent is described by a process following the grammar:

$$P := 0$$
null process $| new n . P$ name restriction $| let x = u in P$ conditional declaration $| out(u) . P$ output $in(x) . P$ input

Process algebra

The role of an agent is described by a process following the grammar:

$$P := 0$$
null process $| new n.P$ name restriction $| let x = u in P$ conditional declaration $| out(u).P$ output $| in(x).P$ input $| reset.P$ personal clock reset $| in^{guarded input$

Process algebra

The role of an agent is described by a process following the grammar:

P := 0	null process
new n.P	name restriction
let x = u in P	conditional declaration
out(u).P	output
$in(x) \cdot P$	input
reset.P	personal clock reset
$lin^{$	guarded input

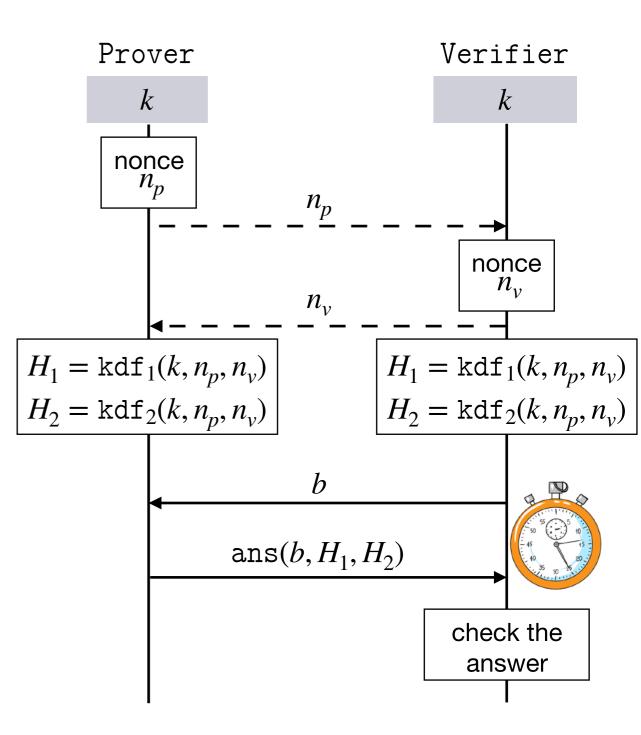
Distance-bounding protocol

A distance-bounding protocol is a pair (V, P) representing the verifier and the prover role.

Moreover, we assume that:

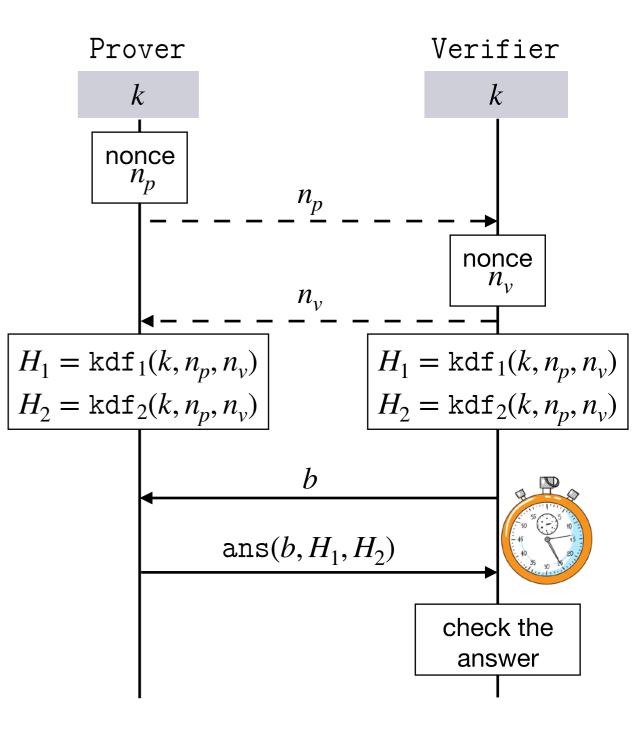
- $\Rightarrow V = block_V.reset.new b.out(b).in^{<2\times t_0}(x).block_V$
- $\Rightarrow P = block_P . in(y_c) . out(u) . block_P'$

Process algebra: Hancke and Kuhn protocol



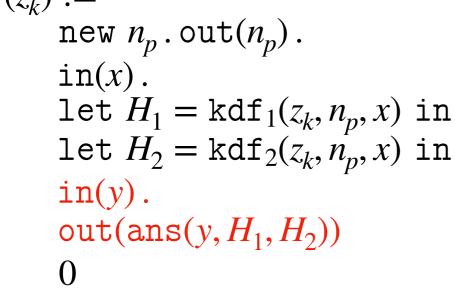
Process algebra: Hancke and Kuhn protocol

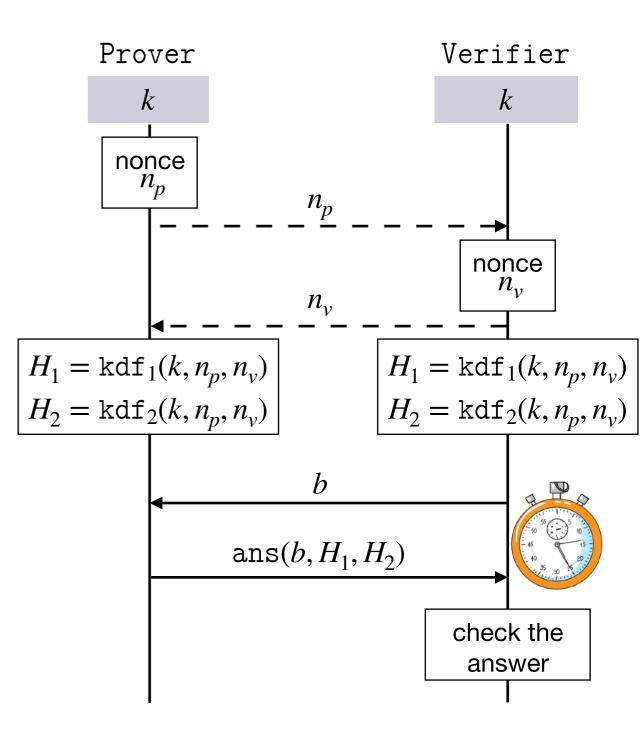
$$\begin{split} V(z_k) &:= \\ & \text{in}(x) \, . \\ & \text{new } n_v \, . \, \text{out}(n_v) \, . \\ & \text{let } H_1 = \text{kdf}_1(z_k, x, n_v) \text{ in} \\ & \text{let } H_2 = \text{kdf}_2(z_k, x, n_v) \text{ in} \\ & \text{reset} \, . \, \text{new } b \, . \, \text{out}(b) \, . \, \text{in}^{<2 \times t_0}(y) \, . \\ & \text{let } y_{test} = \text{eq}(y, \text{ans}(b, H_1, H_2)) \text{ in} \\ & 0 \end{split}$$



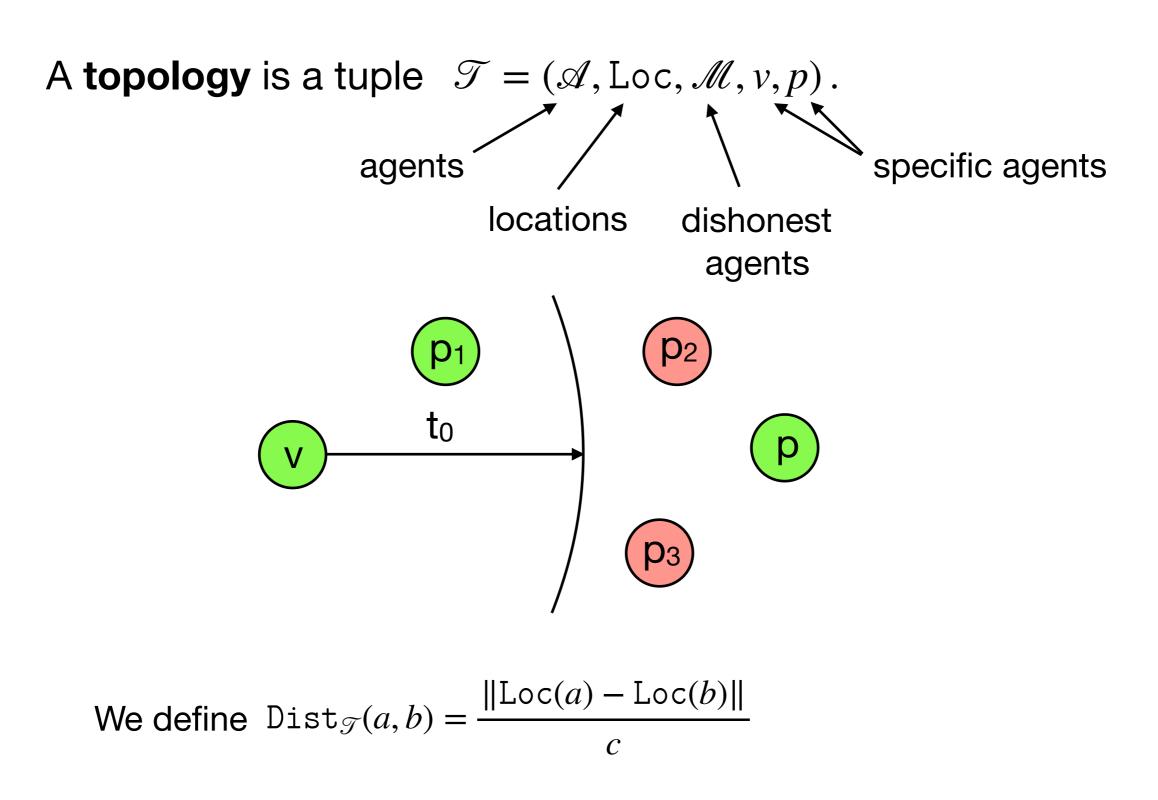
Process algebra: Hancke and Kuhn protocol

 $V(z_k) :=$ in(x). new n_v .out (n_v) . let $H_1 = \operatorname{kdf}_1(z_k, x, n_v)$ in let $H_2 = \mathrm{kdf}_2(z_k, x, n_v)$ in reset.new $b.out(b).in^{<2\times t_0}(y)$. let $y_{test} = eq(y, ans(b, H_1, H_2))$ in 0 $P(z_k) :=$ new n_p .out (n_p) .





Topology



12/20

A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- \mathscr{P} is a multiset of $[P]_a^{t_a}$ with $a \in \mathscr{A}$ and $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$ is a frame
- $t \in \mathcal{R}_+$ is the global time

A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- \mathscr{P} is a multiset of $[P]_a^{t_a}$ with $a \in \mathscr{A}$ and $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$ is a frame
- $t \in \mathcal{R}_+$ is the global time

TIME $(\mathscr{P}; \Phi; t) \longrightarrow_{\mathscr{T}_0} (\mathscr{P}'; \Phi; t')$

- t' > t
- $\blacktriangleright \mathscr{P}' = \{ \lfloor P \rfloor_a^{t_a + (t' t)} \mid \lfloor P \rfloor \in \mathscr{P} \}$

A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- \mathscr{P} is a multiset of $[P]_a^{t_a}$ with $a \in \mathscr{A}$ and $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$ is a frame
- $t \in \mathcal{R}_+$ is the global time

OUT
$$([\operatorname{out}(u) \cdot P]_a^{t_a} \uplus \mathscr{P}; \Phi; t) \xrightarrow{a, \operatorname{out}(u)} \mathscr{T}_0 ([P]_a^{t_a} \uplus \mathscr{P}; \Phi'; t)$$

with $\Phi' = \Phi \cup \{w \xrightarrow{a, t} u\}$

A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- \mathscr{P} is a multiset of $[P]_a^{t_a}$ with $a \in \mathscr{A}$ and $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$ is a frame
- $t \in \mathcal{R}_+$ is the global time

$$\mathsf{IN} \qquad ([\operatorname{in}^*(x) \, P]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t) \xrightarrow{a, \operatorname{in}^*(u)} \mathscr{T}_0 ([P\{x \mapsto u\}]_a^{t_a} \uplus \, \mathscr{P}; \Phi; t)$$

if $\exists b \in \mathscr{A}, t_b \in \mathscr{R}_+$ such that $t_b \leq t - \text{Dist}_{\mathscr{T}_0}(b, a)$ and:

• if
$$b \notin \mathcal{M}$$
 then $u \in img(\lfloor \Phi \rfloor_{h}^{t_{b}})$

• if $b \in \mathcal{M}$ then u is deducible from $\bigcup_{c \in \mathcal{A}} \lfloor \Phi \rfloor_c^{t_b - \text{Dist}_{\mathcal{T}_0}(c,b)}$

A configuration is a tuple $(\mathscr{P}; \Phi; t)$ where:

- \mathscr{P} is a multiset of $[P]_a^{t_a}$ with $a \in \mathscr{A}$ and $t_a \in \mathscr{R}_+$
- $\Phi = \{ w_1 \xrightarrow{a_1, t_1} m_1, \dots, w_n \xrightarrow{a_n, t_n} m_n \}$ is a frame
- $t \in \mathcal{R}_+$ is the global time

NEW, LET, RESET...

Terrorist fraud resistance

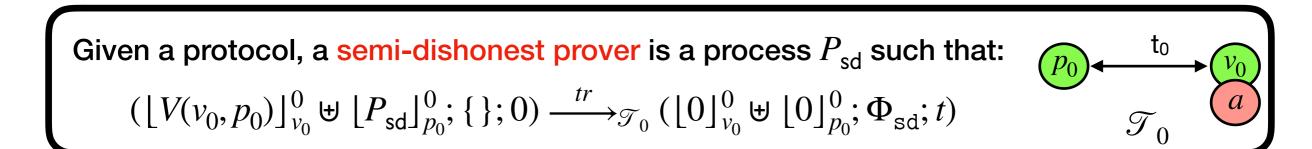
Terrorist fraud resistance: A protocol is terrorist fraud resistant if for any possible attacker's behavior enabling his accomplice to be authenticated once, the accomplice gets an advantage to be authenticated later on.

Terrorist fraud resistance

A protocol \mathscr{P} is terrorist fraud resistant if

Terrorist fraud resistance

Terrorist fraud resistance: A protocol is terrorist fraud resistant if for any possible attacker's behavior enabling his accomplice to be authenticated once, the accomplice gets an advantage to be authenticated later on.



Terrorist fraud resistance

A protocol \mathscr{P} is terrorist fraud resistant if for every semi-dishonest prover P_{sd} ,

Terrorist fraud resistance

Terrorist fraud resistance: A protocol is terrorist fraud resistant if for any possible attacker's behavior enabling his accomplice to be authenticated once, the accomplice gets an advantage to be authenticated later on.

Given a protocol, a semi-dishonest prover is a process P_{sd} such that: $(\lfloor V(v_0, p_0) \rfloor_{v_0}^0 \uplus \lfloor P_{sd} \rfloor_{p_0}^0; \{\}; 0) \xrightarrow{tr}_{\mathcal{T}_0} (\lfloor 0 \rfloor_{v_0}^0 \uplus \lfloor 0 \rfloor_{p_0}^0; \Phi_{sd}; t)$

Terrorist fraud resistance

A protocol \mathscr{P} is terrorist fraud resistant if for every semi-dishonest prover P_{sd} , there exists a topology $\mathscr{T} = (\mathscr{A}_0, \mathscr{M}_0, \operatorname{Loc}_0, v_0, p_0)$ such that $v_0, p_0 \notin \mathscr{M}_0$ and $\operatorname{Dist}_{\mathscr{T}}(v_0, p_0) \ge t_0$ and an initial configuration $(\mathscr{P}_0; \Phi_0; t_0)$ such that:

$$(\mathscr{P}_0; \Phi_0 \cup \Phi_{\mathsf{sd}}; t) \xrightarrow{\iota r} \mathscr{T} ([\operatorname{end}(v_0, p_0)]_{v_0}^{t_v} \uplus \mathscr{P}; \Phi; t')$$

Contributions

1.A formal definition of terrorist fraud

2. Towards automation

- The attacker has a best strategy to collude
- There exists a most general topology

3. Case studies

Best strategy

Given a distance-bounding protocol, with a prover role

 $P = block_P . in(y_c) . out(u) . block_P'$

the most general semi-dishonest prover P^* is defined as follows:

 $P^* = \operatorname{block}_P \cdot \operatorname{out}(u_1, \dots, u_n) \cdot \operatorname{in}(y_c) \cdot \operatorname{out}(u) \cdot \operatorname{block}_P'$

where u_1, \ldots, u_n are terms such that $u = \mathscr{C}[y_c, u_1, \ldots, u_n]$

Continuing our example:

$$\begin{split} P &:= \texttt{new} \ n_p.\texttt{out}(n_p) \text{.in}(x) \text{.let} \ H_1 = \texttt{kdf}_1(k, n_p, x) \text{ in let } H_2 = \texttt{kdf}_2(k, n_p, x) \text{ in} \\ & \texttt{out}(\texttt{pair}(H_1, H_2)) \text{.} \\ & \texttt{in}(y) \text{.out}(\texttt{ans}(y, H_1, H_2)) \text{.} \end{split}$$

Best strategy

Given a distance-bounding protocol, with a prover role

 $P = block_P . in(y_c) . out(u) . block_P'$

the most general semi-dishonest prover P^* is defined as follows:

 $P^* = \operatorname{block}_P \cdot \operatorname{out}(u_1, \dots, u_n) \cdot \operatorname{in}(y_c) \cdot \operatorname{out}(u) \cdot \operatorname{block}_P'$

where u_1, \ldots, u_n are terms such that $u = \mathscr{C}[y_c, u_1, \ldots, u_n]$

Continuing our example:

$$\begin{split} P &:= \texttt{new} \ n_p.\texttt{out}(n_p) \text{.in}(x) \text{.let} \ H_1 = \texttt{kdf}_1(k, n_p, x) \text{ in let } H_2 = \texttt{kdf}_2(k, n_p, x) \text{ in} \\ & \texttt{out}(\texttt{pair}(H_1, H_2)) \text{.} \\ & \texttt{in}(y) \text{.out}(\texttt{ans}(y, H_1, H_2)) \text{.} 0 \end{split}$$

Theorem: one semi-dishonest prover is enough

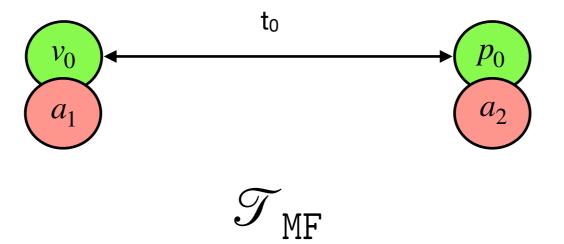
A distance-bounding protocol \mathscr{P}_{prox} is terrorist fraud resistant if and only if \mathscr{P}_{prox} is terrorist fraud resistant w.r.t. P^* .

One topology is enough

Theorem: one topology is enough

An executable distance-bounding protocol \mathscr{P}_{prox} is terrorist fraud resistant w.r.t. P^* if and only if there exists a valid initial configuration $(\mathscr{P}_0; \Phi_0; t_0)$ such that:

$$(\mathscr{P}_0; \Phi_0 \cup \Phi^*; t_0) \xrightarrow{tr} \mathscr{T}_{\mathsf{MF}} ([\operatorname{end}(v_0, p_0)]_{v_0}^{t_v} \uplus \mathscr{P}; \Phi; t)$$



(similar to the reduction result proposed for mafia fraud at FSTTCS'18)

Contributions

1.A formal definition of terrorist fraud

2. Towards automation The attacker has a best strategy to collude There exists a most general topology

3. Case studies

Terrorist fraud resistance

	Assumptions for reducing		Terrorist fraud
Protocols	topologies	semi-dis. prover	resistance
Hancke and Kuhn	\checkmark		×
Hancke and Kuhn modified	\checkmark		
Brands and Chaum	\checkmark	×	×
Swiss-Knife	\checkmark		
SKI	\checkmark		
TREAD-Asymmetric	\checkmark		
TREAD-Asymmetric fixed			
TREAD-Symmetric	\checkmark		
Spade	\checkmark		
Spade fixed	\checkmark		
Munilla et al.	\checkmark		×
MAD	\checkmark	×	×
PaySafe			×
NXP			×

(★: doesn't hold/attack found, ✓: holds/proved secure) (we never obtained false attacks or non-termination)

Conclusion

Contributions

- 1. We propose a symbolic definition of terrorist fraud
- 2. We prove two reduction results enabling automation
 - ➡ The attacker has a best strategy to collude
 - ➡ There exists a most general topology
- 3. We verify numbers of protocols with the ProVerif tool

[FSTTCS'18] + [ESORICS'19] provide a framework to automatically analyse DB protocols w.r.t. the three main classes of attacks (i.e., MF, DH, TF). (under few abstractions like bit-level operations,)

Conclusion

Contributions

- 1. We propose a symbolic definition of terrorist fraud
- 2. We prove two reduction results enabling automation
 - ➡ The attacker has a best strategy to collude
 - ➡ There exists a most general topology
- 3. We verify numbers of protocols with the ProVerif tool

[FSTTCS'18] + [ESORICS'19] provide a framework to automatically analyse DB protocols w.r.t. the three main classes of attacks (i.e., MF, DH, TF). (under few abstractions like bit-level operations,)

Future work:

Extend the model with mobility i.e., enable agents to move during a session:

- \rightarrow redefine each class of attacks
- \rightarrow adapt existing results to enable automation

 $\rightarrow \dots$