Classical hardness of Learning with Errors

Zvika Brakerski1 Adeline Langlois2 Chris Peikert3 Oded Regev4 Damien Stehlé2

1Stanford University
2ENS de Lyon
3Georgia Tech
4New York University
Our main results

A classical reduction from a worst-case lattice problem to the Learning with Errors problem with small modulus.

- Not quantum
- GapSVP in dimension \sqrt{n}
- Dimension n
- Polynomial in n
The Learning With Errors problem [Regev05]

\[\text{LWE}_q^n \]

Given

\[
\begin{pmatrix}
\text{A} \\
\text{A} \\
\text{s} \\
\text{e}
\end{pmatrix}
\]

find

\[\text{s} \]

\[\begin{aligned}
\text{A} &\leftarrow U(\mathbb{Z}_q^{m\times n}), \\
\text{s} &\leftarrow U(\mathbb{Z}_q^n), \\
\text{e} &\sim D_{\mathbb{Z}^m,\alpha q} \text{ with } \alpha = o(1).
\end{aligned} \]

Discrete Gaussian error

Decision version: Distinguish from \((\text{A}, \text{b})\) with \(\text{b}\) uniform.
LWE-based cryptography

From basic to very advanced primitives

- Public key encryption
 [Regev 2005, ...];

- Identity-based encryption
 [Gentry, Peikert and Vaikuntanathan 2008, ...];

- Attribute-based encryption
 [Boyen 2013; Gorbunov, Vaikuntanathan and Wee 2013];

- Fully homomorphic encryption
 [Brakerski and Vaikuntanathan 2011, ...].

Advantages of LWE-based primitives

- Efficient, especially when the modulus is polynomial;
- Security proofs from the hardness of LWE;
- Likely to resist attacks from quantum computers.
Prior reductions from worst-case lattice problem to LWE

- [Regev05]
 - A **quantum** reduction;
 - with \(q \) polynomial.

- [Peikert09]
 - A **classical** reduction;
 - with \(q \) exponential,

- [Peikert09]
 - A **classical** reduction;
 - based on a **non-standard** lattice problem;
 - with \(q \) polynomial.
Prior reductions from worst-case lattice problem to LWE

- [Regev05]
 - A quantum reduction;
 - with q polynomial.

- [Peikert09]
 - A classical reduction;
 - with q exponential.

- [Peikert09]
 - A classical reduction;
 - based on a non-standard lattice problem;
 - with q polynomial.

Our main result

- A classical reduction,
- from a standard worst-case lattice problem,
- with q polynomial.
Main component in the proof: a self reduction

- Recall that [Peikert09] already showed hardness of LWE with q exponential.

How do we obtain a hardness proof for q polynomial?
Main component in the proof: a self reduction

- Recall that [Peikert09] already showed hardness of LWE with q exponential.

How do we obtain a hardness proof for q polynomial?

- All we have to do is show the following reduction:

<table>
<thead>
<tr>
<th>From LWE in dimension n with modulus q^k,</th>
</tr>
</thead>
<tbody>
<tr>
<td>to LWE in dimension nk with modulus q.</td>
</tr>
</tbody>
</table>
Main contributions

Hardness of LWE:

- **Shrinking modulus / Expanding dimension:**
 A reduction from $\text{LWE}_{q^k}^n$ to LWE_{q}^{nk}.

- **Expanding modulus / Shrinking dimension:**
 A reduction from LWE_{q}^n to $\text{LWE}_{q^k}^{n/k}$.

⇒ The hardness of LWE_{q}^n is a function of $n \log q$.

Consequences:

- Hardness of $\text{LWE}_{2^n}^1$ (Hidden Number Problem).

- The Ring-LWE problem in dimension n with exponential modulus is hard under hardness of general lattices (not ideal lattices).
Modulus Switching

A reduction from LWE with modulus q to LWE with modulus p.

How to map $(A, As + e) \mod q$ to $(A', A's + e') \mod p$?

- Transform $A \leftarrow U(\mathbb{Z}_q^{m \times n})$ to $A' \leftarrow U(\mathbb{Z}_p^{m \times n})$;

 First idea: $A' = \left\lfloor \frac{p}{q} A \right\rfloor$?
Modulus Switching

A reduction from LWE with modulus q to LWE with modulus p.

How to map $(A, As + e) \mod q$ to $(A', A's + e') \mod p$?

- Transform $A \leftarrow U(\mathbb{Z}_q^{m \times n})$ to $A' \leftarrow U(\mathbb{Z}_p^{m \times n})$;

First idea: $A' = \left\lfloor \frac{p}{q} A \right\rfloor$?

- Two main problems:
 1. The distribution is not uniform:

A naive rounding introduces artefacts.

solution

Add a Gaussian rounding to smooth the distribution:

$$A' = \frac{p}{q} A + R.$$

2. In $A's + e'$, the rounding errors gets multiplied by the secret s (which is uniform is \mathbb{Z}_q^n).
From large to small secret

From LWE with arbitrary secret to LWE with binary secret.

- Inspired by ideas from cryptography (prior reduction by [Goldwasser, Kalai, Peikert and Vaikuntanathan 2010]) but different and stronger techniques.

- The improvement relies on Extended LWE [Alperin-Sheriff and Peikert 2012].
We give a hardness proof for Extended LWE.
For a given $z \in \mathbb{Z}^m$ small:

\[
\begin{pmatrix}
 m \\
 A \\
 n \\
\end{pmatrix}, \begin{pmatrix}
 A \\
 s \\
 + \\
 e \\
\end{pmatrix}, \begin{pmatrix}
 z \\
 e \\
\end{pmatrix} \xrightarrow{\text{find}} s
\]
Summary of our new hardness proof of LWE

Our main result

A classical reduction from GapSVP in dimension \sqrt{n} to LWE in dimension n with poly(n) modulus.

Reductions of the proof:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Dimension</th>
<th>Modulus</th>
<th>Secret</th>
</tr>
</thead>
<tbody>
<tr>
<td>GapSVP</td>
<td>\sqrt{n}</td>
<td></td>
<td>$\mathbb{Z}_{\sqrt{n}}$ [Peikert09]</td>
</tr>
<tr>
<td>\downarrow^0</td>
<td>\sqrt{n}</td>
<td>large</td>
<td>$\mathbb{Z}_{\sqrt{n}}$</td>
</tr>
<tr>
<td>LWE</td>
<td>\sqrt{n}</td>
<td>large</td>
<td>$\mathbb{Z}_{\sqrt{n}}$</td>
</tr>
<tr>
<td>\downarrow^1</td>
<td>n</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>LWE</td>
<td>n</td>
<td>large</td>
<td>\mathbb{Z}^n</td>
</tr>
<tr>
<td>\downarrow^2</td>
<td>n</td>
<td>poly(n)</td>
<td>in \mathbb{Z}_q^n</td>
</tr>
<tr>
<td>LWE</td>
<td>n</td>
<td>poly(n)</td>
<td>in \mathbb{Z}_q^n</td>
</tr>
</tbody>
</table>
Conclusion

Our main result

A classical reduction from \textsf{GapSVP} in dimension \sqrt{n} to \textsf{LWE} in dimension n with $\text{poly}(n)$ modulus.

Open problems:

Is there a classical reduction as good as the one in [Regev05]?
1. We lose a quadratic term in the dimension;
2. We only get \textsf{GapSVP} and not \textsf{SIVP}.
Conclusion

Our main result
A classical reduction from GapSVP in dimension \sqrt{n} to LWE in dimension n with $\text{poly}(n)$ modulus.

Open problems:
Is there a classical reduction as good as the one in [Regev05]?
1. We lose a quadratic term in the dimension;
 Recall that the [Peikert09] reduction is from GapSVP in dimension \sqrt{n} to LWE with dimension $\times \log(\text{modulus}) = n$.
 Is this reduction sharp?
Conclusion

Our main result
A classical reduction from GapSVP in dimension \sqrt{n} to LWE in dimension n with $\text{poly}(n)$ modulus.

Open problems:
Is there a classical reduction as good as the one in [Regev05]?
1. We lose a quadratic term in the dimension;
2. We only get GapSVP and not SIVP.

In (quantum) [Regev05] the worst-case lattice problem is SIVP.

SIVP feels like a harder problem than GapSVP